Transactions and Failure
Recovery

Instructor: Mateil Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Outline

Assignment 1 bonus solutions
Defining correctness
Transaction model

Hardware failures

Recovery with logs

Outline

Assignment 1 bonus solutions
Defining correctness
Transaction model

Hardware failures

Recovery with logs

Outline

Assignment 1 bonus solutions
Defining correctness
Transaction model

Hardware failures

Recovery with logs

Focus of This Part of Course

Correctness in case of failures & concurrency

» There’s no point running queries quickly if the
input data is wrong!

Correctness of Data

Would like all data in our system to be
“*accurate” or “correct” at all times

» Both logical data model and physical structs

Employees
Name | Age

Smith | 52
Green |3421
Chen 1

Idea: Integrity or Consistency
Constraints

Predicates that data structures must satisfy

Examples:
» X Is field of relation R
» Domain(x) = {student, prof, staff}
» If x=prof in a record then office!=NULL in it
» T is valid B-tree index for attribute x of R

» No staff member should make more than
twice the average salary

Definition

Consistent state: satisfies all constraints

Consistent DB: DB in consistent state

Constraints (As We Use Here)
May Not Capture All Issues

Example 1: transaction constraints

When salary is updated,
new salary > old salary

When account record is deleted,
balance =0

Constraints (As We Use Here)
May Not Capture All Issues

Note: some transaction constraints could be
“emulated” by simple constraints, e.qg.,

account | acct# | |balance |deleted?

Constraints (As We Use Here)
May Not Capture All Issues

Example 2: database should reflect real world

DB <>

Constraints (As We Use Here)
May Not Capture All Issues

Example 2: database should reflect real world

CS 245 12

In Any Case, Continue with
Constraints...

Observation: DB can’t always be consistent!
Example: a, + a, +.... a, = TOT (constraint)

Deposit $100 in a,: [a, « a, + 100
J
TOT « TOT + 100

Example: a, + a, +.... a, = TOT (constraint)
Deposit $100ina,: a, « a, + 100
TOT « TOT + 100

a, | 50 150 150

TOT | 1000 1000 1100

Transaction: Collection of Actions
that Preserve Consistency

ConsistentDB)—— T Consistent DB’

Big Assumption:

If T starts with a consistent state
+ T executes in isolation

— | |leaves a consistent state

Correctness (Informally)

If we stop running transactions, database is
left consistent

Each transaction sees a consistent DB

More Detail: Transaction API

CS 245

\

Client App

Start Transaction

Read

Write

Commit

DB

18

More Detail: Transaction API

Start Transaction

T
Read # N

E) Write N D B
Client App Ab:ort ~

Both clients and system can abort transactions

CS 245 19

How Can Constraints Be
Violated?

Transaction bug
DBMS bug

Hardware failure
» €.g., disk crash alters balance of account

Data sharing

» e.g.. T1: give 10% raise to programmers,
T2: change programmers = marketers

We Won’t Consider:

How to write correct transactions
How to check for DBMS bugs

Constraint verification & repair

» That is, the solutions we'll study do not need
to know the constraints!

Failure Recovery

First order of business: Failure Model

Failure Models

Events i Desired

Undesired i Expected

Unexpected

Our Failure Model

CPU

.~ processor

memaory - .

e

Our Failure Model

Desired Events: see product manuals....

Undesired Expected Events:

» System crash (“fail-stop failure”)

 CPU halts, resets
* Memory lost

that’s it!!
Undesired Unexpected: Everything else!

Undesired Unexpected:
Everything Else!

Examples:
» Disk data is lost
» Memory lost without CPU halt
» CPU implodes wiping out the universe....

Is This Model Reasonable?

Approach: Add low level checks + redundancy
to increase probability that model holds

E.g.,] Replicate disk storage (stable store)

< Memory parity

_ CPU checks

Second Order of Business:

] =

Memory Disk

Storage hierarchy

Operations

Input (x): block containing x - memory
Output (x): block containing x — disk

Read (x,t): do input(x) if necessary
t « value of x in block

Write (x,t): do input(x) if necessary
value of x in block «t

Key Problem: Unfinished
Transaction

Example Constraint: A=B

T1: A« Ax?2
B« Bx2

T1: Read (A1), t <« tx2

Write (A,t);
Read (B,t); t « tx2
Write (B,t);
Output (A);
Output (B);
T
~ N A
A: 8 A: 8
B: 8 B: 8
~

memory disk

T1: Read (At); t « tx2

Write (A,t);

Read (B,t); t « tx2

Write (B,t);

Output (A);

Output (B);
T
~ N A

B:.8 16 B- 8

~

memory disk

T1: Read (A t); t <« tx2

Write (A,t);
Read (B,t); t « tx2
Write (B,t);
—OutputtA),— failure!
Output (B);
— T
~ A
A& 16 A: 316
B:.8 16 B:8
~

memory disk

CS 245

Need: Atomicity

Execute all actions of a transaction together,
or none at all

One Solution

Undo logging (immediate modification)

Due to: Hansel and Gretel, 1812 AD

Updated to durable undo
logging in 1813 AD

CS 245 35

Undo Logging (immediate modification)

T1: Read (A1), t« tx2 A=B
Write (At);
Read (B,t); t « tx2
Write (B,t);
Output (A); N
Output (B); ~—
T
~
A:8 A:8
B:8 B:8
- ~_

memory disk log

Undo Logging (immediate modification)

T1: Read (A1), t« tx2 A=B
Write (A,t);
Read (B,t); t « tx2
Write (B,t);
Output (A); AT
Output (B); ~—
<T1, start>
> | <T1,A 8
A8 16 A8
B:8 16 B8
- ~_

memory disk log

Undo Logging (immediate modification)

T1: Read (A1), t« tx2 A=B
Write (A,t);
Read (B,t); t « tx2
Write (B,t);
Output (A); AT
Output (B); ~—
<T1, start>
> | <T1,A 8
A:8 16 A3 16 <T1, B, 8>
B:8 16 B8
- ~_

memory disk log

Undo Logging (immediate modification)

T1: Read (A1), t« tx2 A=B
Write (At);
Read (B,t); t « tx2
Write (B,t);
Output (A); AT
Output (B); ~—
<T1, start>
> | <T1,A 8
A8 16 AZ 16 <T1, B, 8>
B:8 16 B:8" 16
- ~_

memory disk log

Undo Logging (Immediate modification)

T1: Read (At); t <« tx2 A=B
Write (At);
Read (B,t); t « tx2
Write (B,t);
Output (A); T
Output (B); ~
<T1, start>
= <T1, A, 8>
A8 16 A8 16 <T1, B, 8>
B:8 16 B:& 16 <T1, commit>
~ \/

memory disk log

One “Complication”
Log is first written in memory

Not written to disk on every action

memory

3
A8 16 DB
B8 16 B: 8
Log: — Log
<T1,start> ~—
<T1, A, 8>
<T1, B, 8>

.

One “Complication”
Log is first written in memory

Not written to disk on every action

memory

A 816
A: 816 : DB
BZ/S/']G B: 8 BAD STATE
Log: — " Log # 1
<T1,start> ~_
<T1, A, 8>
<T1, B, 8>
~

One “Complication”
Log is first written in memory

Not written to disk on every action

memory —
A.816 A816 DB
B-816 BAD#SZTATE
Log: o
<T1,start> ¥/Log
<T1, A, 8> :
<T1, B, 8> <T1, B, 8>
<T1, commit>
w

Undo Logging Rules

1.

For every action, generate undo log record
(containing old value)

Before X is modified on disk, log records
pertaining to X must be on disk (write
ahead logging: WAL)

Before commit record is flushed to log, all
writes of transaction must be on disk

Recovery Rules: Undo Logging

(1) Let S = set of transactions with
<Ti, start> in log,
but no <Ti, commit> or <Ti, abort> in log

(2) For each <Ti, X, v>in log, in reverse order
(latest — earliest), do:

-if Ti € Sthen | - write (X, v)
{- output (X)
(3) Foreach Ti € S do
- write <Ti, abort> to log

Question

Can our writes of <Ti, abort> records be done
in any order (in Step 3)7?

» Example: T1 and T2 both write A

» T1 executed before T2

» T1 and T2 both rolled-back

» <T1, abort> written but NOT <T2, abort>?

» <T2, abort> written but NOT <T1, abort>?

i ; —

A=1 T1 write A A=2 T2 write A A=3 time/log

What If Crash During Recovery?

No problem! — Undo is idempotent

(same effect if you do it twice)

Any Downsides to Undo
Logging?

Any Downsides to Undo
Logging?

Have to do a lot of I/O to commit (write all
updated objects to disk first)

Hard to replicate database to another disk
(must push all changes across the network)

To Discuss

Redo logging
Undo/redo logging

Redo Logging

First send Gretel up with no rope,
then Hansel goes up safely with rope!

CS 245 51

Redo Logglng (deferred modification)

T1: Read(At); t « tx2; write (A,});
Read(B,t); t « tx2; write (B,t);

Output(A); Output(B) ©
W
A: 8 A: 8
B: 8 B: 8
~N_
memory DB ~_

LOG

Redo Logglng (deferred modification)

T1: Read(A,t); t «— tx2; write (A,1);
Read(B,t); t « tx2; write (B,t);

Output(A); Output(B) ©
N <T1, start>
~N_ <T1 ; A, 16>

A: & 16 A: 8 <T1, B, 16>
B:8716 B: 8 <T1, commit>
~N_

memory DB ~_

LOG

Redo Logglng (deferred modification)

T1: Read(A,t); t «— tx2; write (A,1);
Read(B,t); t « tx2; write (B,t);

Output(A); Output(B) ©
R <T1, start>
outpu <T1, A, 16>
A: & 16 _Mm <T1, B, 16>
B:8716 B: 8716 <T1, commit>
~N_
memory DB ~_

LOG

CS 245 54

Redo Logglng (deferred modification)

T1: Read(A,t); t «— tx2; write (A,1);
Read(B,t); t « tx2; write (B,t);

Output(A); Output(B) ©
outout < <T1, start>
Ag16 — . A 816 j},’g’, -
B: 8716 w <T1, commit>
<T1, end>
memory DB

LOG

CS 245 55

Redo Logging Rules

1.

For every action, generate redo log record
(containing new value)

Before X is modified on disk (DB), all log
records for transaction that modified X
(including commit) must be on disk

Flush log at commit

Write END record after DB updates
flushed to disk

Recovery Rules: Redo Logging

(1) Let S = set of transactions with
<Ti, commit> (and no <Ti, end>) in log

(2) For each <Ti, X, v> in log, in forward order
(earliest — latest) do:

-if Ti e S then [Write(X, v)
<
' Output(X)

(3) For each Ti € S, write <Ti, end>

