
Transactions and Failure
Recovery

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Outline

Assignment 1 bonus solutions

Defining correctness

Transaction model

Hardware failures

Recovery with logs

CS 245 2

Outline

Assignment 1 bonus solutions

Defining correctness

Transaction model

Hardware failures

Recovery with logs

CS 245 3

Outline

Assignment 1 bonus solutions

Defining correctness

Transaction model

Hardware failures

Recovery with logs

CS 245 4

Focus of This Part of Course

Correctness in case of failures & concurrency
» There’s no point running queries quickly if the

input data is wrong!

CS 245 5

Correctness of Data

Would like all data in our system to be
“accurate” or “correct” at all times
» Both logical data model and physical structs

Employees

CS 245 6

Name

Smith
Green
Chen

Age

52
3421

1

Idea: Integrity or Consistency
Constraints
Predicates that data structures must satisfy

Examples:
» x is field of relation R
» Domain(x) = {student, prof, staff}
» If x=prof in a record then office!=NULL in it
» T is valid B-tree index for attribute x of R
» No staff member should make more than

twice the average salary

CS 245 7

Definition

Consistent state: satisfies all constraints

Consistent DB: DB in consistent state

CS 245 8

Constraints (As We Use Here)
May Not Capture All Issues

Example 1: transaction constraints

When salary is updated,
new salary > old salary

When account record is deleted,
balance = 0

CS 245 9

Constraints (As We Use Here)
May Not Capture All Issues

Note: some transaction constraints could be
“emulated” by simple constraints, e.g.,

account

CS 245 10

acct # …. balance deleted?

Constraints (As We Use Here)
May Not Capture All Issues
Example 2: database should reflect real world

CS 245 11

DB Reality

Constraints (As We Use Here)
May Not Capture All Issues
Example 2: database should reflect real world

CS 245 12

DB Reality

In Any Case, Continue with
Constraints...
Observation: DB can’t always be consistent!

Example: a1 + a2 +…. an = TOT (constraint)

Deposit $100 in a2: a2 ¬ a2 + 100
TOT ¬ TOT + 100

CS 245 13

a2

TOT

..
50
..

1000

..
150

..
1000

..
150

..
1100

Example: a1 + a2 +…. an = TOT (constraint)
Deposit $100 in a2: a2 ¬ a2 + 100

TOT ¬ TOT + 100

CS 245 14

Transaction: Collection of Actions
that Preserve Consistency

CS 245 15

Consistent DB Consistent DB’T

Big Assumption:

If T starts with a consistent state

+ T executes in isolation

Þ T leaves a consistent state

CS 245 16

Correctness (Informally)

If we stop running transactions, database is
left consistent

Each transaction sees a consistent DB

CS 245 17

More Detail: Transaction API

CS 245 18

DB
Client App

Start Transaction

Read

Write

⋮
Commit

More Detail: Transaction API

CS 245 19

DB
Client App

Start Transaction

Read

Write

⋮
Abort

Both clients and system can abort transactions

How Can Constraints Be
Violated?
Transaction bug

DBMS bug

Hardware failure
» e.g., disk crash alters balance of account

Data sharing
» e.g.: T1: give 10% raise to programmers,

T2: change programmers Þ marketers

CS 245 20

We Won’t Consider:

How to write correct transactions

How to check for DBMS bugs

Constraint verification & repair
» That is, the solutions we’ll study do not need

to know the constraints!

CS 245 21

Failure Recovery

First order of business: Failure Model

CS 245 22

Events Desired

Undesired Expected

Unexpected

CS 245 23

Failure Models

Our Failure Model

processor

memory disk

CS 245 24

CPU

M D

Our Failure Model

Desired Events: see product manuals….

Undesired Expected Events:
» System crash (“fail-stop failure”)

• CPU halts, resets
• Memory lost

CS 245 25

Undesired Unexpected: Everything else!
that’s it!!

Undesired Unexpected:
Everything Else!

Examples:
» Disk data is lost
» Memory lost without CPU halt
» CPU implodes wiping out the universe….

CS 245 26

Is This Model Reasonable?

Approach: Add low level checks + redundancy
to increase probability that model holds

E.g., Replicate disk storage (stable store)

Memory parity

CPU checks

CS 245 27

Second Order of Business:

Storage hierarchy

CS 245 28

Memory Disk

x x

Operations

Input (x): block containing x ® memory

Output (x): block containing x ® disk

Read (x,t): do input(x) if necessary
t ¬ value of x in block

Write (x,t): do input(x) if necessary
value of x in block ¬ t

CS 245 29

Key Problem: Unfinished
Transaction

Example Constraint: A=B

T1: A ¬ A ´ 2
B ¬ B ´ 2

CS 245 30

T1: Read (A,t); t ¬ t´2
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

CS 245 31

T1: Read (A,t); t ¬ t´2
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

CS 245 32

T1: Read (A,t); t ¬ t´2
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

16

failure!

CS 245 33

Need: Atomicity

Execute all actions of a transaction together,
or none at all

CS 245 34

One Solution

Undo logging (immediate modification)

Due to: Hansel and Gretel, 1812 AD

Updated to durable undo
logging in 1813 AD

CS 245 35

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

CS 245 36

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

CS 245 37

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>

CS 245 38

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>
16

CS 245 39

T1: Read (A,t); t ¬ t´2 A=B
Write (A,t);
Read (B,t); t ¬ t´2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Undo Logging (Immediate modification)

16
16

<T1, start>
<T1, A, 8>

<T1, commit>
16 <T1, B, 8>
16

CS 245 40

One “Complication”
Log is first written in memory

Not written to disk on every action
memory

DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

CS 245 41

One “Complication”
Log is first written in memory

Not written to disk on every action
memory

DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

CS 245 42

16
BAD STATE

1

One “Complication”
Log is first written in memory

Not written to disk on every action
memory

DB

Log

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

CS 245 43

16
BAD STATE

2

<T1, B, 8>
<T1, commit>

...

Undo Logging Rules

1. For every action, generate undo log record
(containing old value)

2. Before X is modified on disk, log records
pertaining to X must be on disk (write
ahead logging: WAL)

3. Before commit record is flushed to log, all
writes of transaction must be on disk

CS 245 44

(1) Let S = set of transactions with
<Ti, start> in log,
but no <Ti, commit> or <Ti, abort> in log

(2) For each <Ti, X, v> in log, in reverse order
(latest ® earliest), do:

- if Ti Î S then - write (X, v)
- output (X)

(3) For each Ti Î S do
- write <Ti, abort> to log

CS 245 45

Recovery Rules: Undo Logging

Question

Can our writes of <Ti, abort> records be done
in any order (in Step 3)?
» Example: T1 and T2 both write A
» T1 executed before T2
» T1 and T2 both rolled-back
» <T1, abort> written but NOT <T2, abort>?
» <T2, abort> written but NOT <T1, abort>?

CS 245 46

T1 write A T2 write A time/logA=1 A=2 A=3

What If Crash During Recovery?

No problem! → Undo is idempotent

(same effect if you do it twice)

CS 245 47

Any Downsides to Undo
Logging?

CS 245 48

Any Downsides to Undo
Logging?

Have to do a lot of I/O to commit (write all
updated objects to disk first)

Hard to replicate database to another disk
(must push all changes across the network)

CS 245 49

To Discuss

Redo logging

Undo/redo logging

CS 245 50

Redo Logging

First send Gretel up with no rope,
then Hansel goes up safely with rope!

CS 245 51

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

CS 245 52

A: 8
B: 8

A: 8
B: 8

memory DB

LOG

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

CS 245 53

A: 8
B: 8

A: 8
B: 8

memory DB

LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

CS 245 54

A: 8
B: 8

A: 8
B: 8

memory DB

LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

output
16
16

Redo Logging (deferred modification)

T1: Read(A,t); t ← t´2; write (A,t);
Read(B,t); t ← t´2; write (B,t);
Output(A); Output(B)

CS 245 55

A: 8
B: 8

A: 8
B: 8

memory DB

LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>
<T1, end>

output
16
16

Redo Logging Rules

1. For every action, generate redo log record
(containing new value)

2. Before X is modified on disk (DB), all log
records for transaction that modified X
(including commit) must be on disk

3. Flush log at commit
4. Write END record after DB updates

flushed to disk

CS 245 56

Recovery Rules: Redo Logging

(1) Let S = set of transactions with
<Ti, commit> (and no <Ti, end>) in log

(2) For each <Ti, X, v> in log, in forward order
(earliest ® latest) do:

- if Ti Î S then Write(X, v)
Output(X)

(3) For each Ti Î S, write <Ti, end>

CS 245 57

