
Concurrency Control

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

The Problem

T1 T2 … Tn

DB
(consistency
constraints)

Different transactions may need to access data
items at the same time, violating constraints

CS 245 2

The Problem

Even if each transaction maintains constraints
by itself, interleaving their actions does not

Could try to run just one transaction at a time
(serial schedule), but this has problems
» Too slow! Especially with external clients & IO

CS 245 3

High-Level Approach

Define isolation levels: sets of guarantees
about what transactions may experience

Strongest level: serializability (result is same
as some serial schedule)

Many others possible: snapshot isolation,
read committed, read uncommitted, …

CS 245 4

Outline
What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 5

Example

T1: Read(A) T2: Read(A)
A ¬ A+100 A ¬ A´2
Write(A) Write(A)
Read(B) Read(B)
B ¬ B+100 B ¬ B´2
Write(B) Write(B)

Constraint: A=B

CS 245 6

Schedule C
T1 T2
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A´2;
Write(A);

Read(B); B ¬ B+100;
Write(B);

Read(B); B ¬ B´2;
Write(B);

CS 245 7

Schedule C
T1 T2
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A´2;
Write(A);

Read(B); B ¬ B+100;
Write(B);

Read(B); B ¬ B´2;
Write(B);

A B
25 25

125

250

125

250
250 250

CS 245 8

Schedule D
T1 T2
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A´2;
Write(A);
Read(B); B ¬ B´2;
Write(B);

Read(B); B ¬ B+100;
Write(B);

CS 245 9

Schedule D
T1 T2
Read(A); A ¬ A+100
Write(A);

Read(A); A ¬ A´2;
Write(A);
Read(B); B ¬ B´2;
Write(B);

Read(B); B ¬ B+100;
Write(B);

A B
25 25

125

250

50

150
250 150

CS 245 10

Want schedules that are “good”, regardless of
» initial state and
» transaction semantics

Only look at order of read & write operations

Example:

SC = r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

Our Goal

We don’t know the logic
in external client apps!

CS 245 11

SC’ = r1(A)w1(A)r1(B)w1(B)r2(A)w2(A)r2(B)w2(B)

T1 T2

Example:

SC = r1(A)w1(A)r2(A)w2(A)r1(B)w1(B)r2(B)w2(B)

CS 245 12

However, for SD:

SD = r1(A)w1(A)r2(A)w2(A) r2(B)w2(B)r1(B)w1(B)

Another way to view this:
» r1(B) after w2(B) means T1 should be after T2 in an

equivalent serial schedule (T2 ® T1)
» r2(A) after w1(A) means T2 should be after T1 in an

equivalent serial schedule (T1 ® T2)
» Can’t have both of these!

CS 245 13

Outline
What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 14

Transaction: sequence of ri(x), wi(x) actions

Conflicting actions: r1(A) w1(A) w1(A)

w2(A) r2(A) w2(A)

Schedule: a chronological order in which all the
transactions’ actions are executed

Serial schedule: no interleaving of actions from
different transactions
CS 245 15

Concepts

Question

Is it OK to model reads & writes as occurring
at a single point in time in a schedule?

S = … r1(x) … w2(b) …

CS 245 16

Question

What about conflicting, concurrent actions on
same object?

start r1(A) end r1(A)

start w2(A) end w2(A)

CS 245 17

time

Assume “atomic actions” that only occur at one
point in time (e.g. implement using locking)

Definition

S1, S2 are conflict equivalent schedules if
S1 can be transformed into S2 by a series of
swaps of non-conflicting actions

(i.e., can reorder non-conflicting operations in
S1 to obtain S2)

CS 245 18

Definition

A schedule is conflict serializable if it is
conflict equivalent to some serial schedule

CS 245 19

Key idea:
» Conflicts “change” result of reads and writes
» Conflict serializable means there exists

some equivalent serial execution that does
not change the effects

How can we compute whether a schedule is
conflict serializable?

Outline
What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 20

Precedence Graph P(S)

Nodes: transactions in a schedule S

Edges: Ti ® Tj whenever
» pi(A), qj(A) are actions in S
» pi(A) <S qj(A) (occurs earlier in schedule)
» at least one of pi, qj is a write (i.e. conflict)

CS 245 21

Exercise

What is P(S) for

S = w3(A) w2(C) r1(A) w1(B) r1(C) w2(A) r4(A) w4(D)

Is S serializable?

CS 245 22

Another Exercise

What is P(S) for

S = w1(A) r2(A) r3(A) w4(A)

CS 245 23

Lemma

S1, S2 conflict equivalent Þ P(S1)=P(S2)

CS 245 24

S1, S2 conflict equivalent Þ P(S1)=P(S2)

Proof:
Assume P(S1) ¹ P(S2)
Þ $ Ti: Ti ® Tj in S1 and not in S2

Þ S1 = …pi(A)... qj(A)… pi, qj

S2 = …qj(A)… pi(A)... conflict

Þ S1, S2 not conflict equivalent
CS 245 25

Lemma

Note: P(S1)=P(S2) Þ S1, S2 conflict equivalent

CS 245 26

Note: P(S1)=P(S2) Þ S1, S2 conflict equivalent

Counter example:

S1 = w1(A) r2(A) w2(B) r1(B)

S2 = r2(A) w1(A) r1(B) w2(B)

CS 245 27

P(S1) acyclic ÜÞ S1 conflict serializable

(Ü) Assume S1 is conflict serializable
Þ $ Ss (serial): Ss, S1 conflict equivalent
Þ P(Ss) = P(S1) (by previous lemma)
Þ P(S1) acyclic since P(Ss) is acyclic

CS 245 28

Theorem

T1

T2 T3

T4

CS 245 29

P(S1) acyclic ÜÞ S1 conflict serializable

Theorem

(Þ) Assume P(S1) is acyclic
Transform S1 as follows:
(1) Take T1 to be transaction with no inbound edges
(2) Move all T1 actions to the front

S1 = ……. qj(A)…….p1(A)…..

(3) we now have S1 = <T1 actions><... rest ...>
(4) repeat above steps to serialize rest!
CS 245 30

P(S1) acyclic ÜÞ S1 conflict serializable

Theorem
T1

T2 T3

T4

Outline
What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 31

How to Enforce Serializable
Schedules?
Option 1: run system, recording P(S); at end
of day, check for cycles in P(S) and declare
whether execution was good

CS 245 32

How to Enforce Serializable
Schedules?
Option 2: prevent P(S) cycles from occurring

T1 T2 ….. Tn

CS 245 33

Scheduler

DB

A Locking Protocol

Two new actions:

lock: li (A)

unlock: ui (A)

CS 245 34

scheduler

T1 T2

lock
table

Transaction i locks object A

Rule #1: Well-Formed
Transactions

Ti: … li(A) … ri(A) … ui(A) ...

CS 245 35

Transactions can only operate on locked items

Rule #2: Legal Scheduler

S = …….. li(A) ………... ui(A) ……...

CS 245 36

no lj(A)

Only one transaction can lock item at a time

Exercise
Which schedules are legal?
Which transactions are well-formed?

S1 = l1(A) l1(B) r1(A) w1(B) l2(B) u1(A) u1(B)
r2(B) w2(B) u2(B) l3(B) r3(B) u3(B)

S2 = l1(A) r1(A) w1(B) u1(A) u1(B) l2(B) r2(B)
w2(B) l3(B) r3(B) u3(B)

S3 = l1(A) r1(A) u1(A) l1(B) w1(B) u1(B) l2(B)
r2(B) w2(B) u2(B) l3(B) r3(B) u3(B)

CS 245 37

Exercise
Which schedules are legal?
Which transactions are well-formed?

S1 = l1(A) l1(B) r1(A) w1(B) l2(B) u1(A) u1(B)
r2(B) w2(B) u2(B) l3(B) r3(B) u3(B)

S2 = l1(A) r1(A) w1(B) u1(A) u1(B) l2(B) r2(B)
w2(B) l3(B) r3(B) u3(B)

S3 = l1(A) r1(A) u1(A) l1(B) w1(B) u1(B)
l2(B) r2(B) w2(B) u2(B) l3(B) r3(B) u3(B)

CS 245 38

u2(B) missing

T1 T2
l1(A);Read(A)
A←A+100;Write(A);u1(A)

l2(A);Read(A)
A←Ax2;Write(A);u2(A)
l2(B);Read(B)
B←Bx2;Write(B);u2(B)

l1(B);Read(B)
B←B+100;Write(B);u1(B)

Schedule F

CS 245 39

A B
25 25

125

250

50

150
250 150

Rule #3: 2-Phase Locking (2PL)

Ti = ……. li(A) ………... ui(A) ……...

CS 245 40

no unlocks no locks

Transactions first lock all items they need, then
unlock them

locks
held by
Ti

Time

Growing Shrinking
Phase Phase

CS 245 41

2-Phase Locking (2PL)

T1 T2
l1(A);Read(A)
A←A+100;Write(A)
l1(B);u1(A)

CS 245 42

Schedule G

T1 T2
l1(A);Read(A)
A←A+100;Write(A)
l1(B);u1(A)

l2(A);Read(A)
A←A⨯2;Write(A)
l2(B) delayed

CS 245 43

Schedule G

T1 T2
l1(A);Read(A)
A←A+100;Write(A)
l1(B);u1(A)

l2(A);Read(A)
A←A⨯2;Write(A)
l2(B)

Read(B);B←B+100
Write(B);u1(B)

delayed

CS 245 44

Schedule G

T1 T2
l1(A);Read(A)
A←A+100;Write(A)
l1(B);u1(A)

l2(A);Read(A)
A←A⨯2;Write(A)
l2(B)

Read(B);B←B+100
Write(B);u1(B)

l2(B);u2(A);Read(B)
B←B⨯2;Write(B);u2(B)

delayed

CS 245 45

Schedule G

T1 T2
l1(A); Read(A) l2(B); Read(B)
A←A+100; Write(A) B←B⨯2; Write(B)
l1(B) l2(A)

CS 245 46

Schedule H (T2 Ops Reversed)

delayed
(T1 holds A)

delayed
(T2 holds B)

Problem: Deadlock between transactions

Dealing with Deadlock

Option 1: Detect deadlocks and roll back one
of the deadlocked transactions
» The rolled back transaction no longer appears

in our schedule

Option 2: Agree on an order to lock items in
that prevents deadlocks
» E.g. transactions acquire locks in key order
» Must know which items Ti will need up front!

CS 245 47

Is 2PL Correct?

Yes! We can prove that following rules #1,2,3
gives conflict-serializable schedules

CS 245 48

Conflict Rules for Lock Ops

li(A), lj(A) conflict

li(A), uj(A) conflict

Note: no conflict <ui(A), uj(A)>, <li(A), rj(A)>,...

CS 245 49

Theorem

Rules #1,2,3 Þ conflict-serializable schedule
(2PL)

CS 245 50

To help in proof:
Definition: Shrink(Ti) = SH(Ti) =

first unlock action of Ti

Lemma
Ti ® Tj in S Þ SH(Ti) <S SH(Tj)

CS 245 51

Proof:
Ti ® Tj means that

S = … pi(A) … qj(A) …; p,q conflict
By rules 1, 2:

S = … pi(A) … ui(A) … lj(A) ... qj(A) …

By rule 3: SH(Ti) SH(Tj)
So, SH(Ti) <S SH(Tj)

Theorem: Rules #1,2,3 Þ
Conflict Serializable Schedule
Proof:

(1) Assume P(S) has cycle

T1 ® T2 ®…. Tn ® T1

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1)

(3) Impossible, so P(S) acyclic

(4) Þ S is conflict serializable
CS 245 52

2PL Subset of Serializable

CS 245 53

2PL
Serializable

S1: w1(X) w3(X) w2(Y) w1(Y)

CS 245 54

2PL
Serializable

S1

S1 cannot be achieved via 2PL:
The lock by T1 for Y must occur after w2(Y), so the
unlock by T1 for X must occur after this point (and
before w1(X)). Thus, w3(X) cannot occur under 2PL
where shown in S1.

But S1 is serializable: equivalent to T2, T1, T3.

SC: w1(A) w2(A) w1(B) w2(B)

Are our schedules SC and SD 2PL schedules?

SD: w1(A) w2(A) w2(B) w1(B)

CS 245 55

If You Need More Practice

Optimizing Performance

Beyond this simple 2PL protocol, it is all a
matter of improving performance and
allowing more concurrency….
» Shared locks
» Multiple granularity
» Inserts, deletes and phantoms
» Other types of C.C. mechanisms

CS 245 57

So far:

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Do not conflict

CS 245 58

Shared Locks

So far:

S = ...l1(A) r1(A) u1(A) … l2(A) r2(A) u2(A) …

Do not conflict

Instead:
S=... ls1(A) r1(A) ls2(A) r2(A) …. us1(A) us2(A)

CS 245 59

Shared Locks

Multiple Lock Modes

Lock actions
l-mi(A): lock A in mode m (m is S or X)
u-mi(A): unlock mode m (m is S or X)

Shorthand:
ui(A): unlock whatever modes Ti has locked A

CS 245 60

Ti =... l-S1(A) … r1(A) … u1 (A) …

Ti =... l-X1(A) … w1(A) … u1 (A) …

CS 245 61

Rule 1: Well-Formed
Transactions

Transactions must acquire the right lock type
for their actions (S for read only, X for r/w).

Rule 1: Well-Formed
Transactions
What about transactions that read and write
same object?

Option 1: Request exclusive lock

T1 = ...l-X1(A) … r1(A) ... w1(A) ... u(A) …

CS 245 62

Rule 1: Well-Formed
Transactions
What about transactions that read and write
same object?

Option 2: Upgrade lock to X on write

T1 = ...l-S1(A)…r1(A)...l-X1(A)…w1(A)...u1(A)…

CS 245 63

(Think of this as getting a 2nd lock, or dropping S to get X.)

Rule 2: Legal Scheduler

S = ... l-Si(A) … … ui(A) …

no l-Xj(A)

S = ... l-Xi(A) … … ui(A) …

no l-Xj(A)
no l-Sj(A)

CS 245 64

A Way to Summarize Rule #2

Lock mode compatibility matrix

compat = S X
S true false
X false false

CS 245 65

Rule 3: 2PL Transactions

No change except for upgrades:

(I) If upgrade gets more locks

(e.g., S ® {S, X}) then no change!

(II) If upgrade releases read lock (e.g., S®X)

can be allowed in growing phase

CS 245 66

Proof: similar to X locks case

Detail:

l-mi(A), l-nj(A) do not conflict if compat(m,n)

l-mi(A), u-nj(A) do not conflict if compat(m,n)

CS 245 67

Rules 1,2,3 Þ Conf. Serializable
Schedules for S/X Locks

Lock Modes Beyond S/X

Examples:

(1) increment lock

(2) update lock

CS 245 68

Example 1: Increment Lock

Atomic addition action: INi(A)

{Read(A); A ¬ A+k; Write(A)}

INi(A), INj(A) do not conflict, because addition
is commutative!

CS 245 69

Compatibility Matrix

compat S X I

S

X

I

CS 245 70

Compatibility Matrix

compat S X I

S T F F

X F F F

I F F T

CS 245 71

A common deadlock problem with upgrades:

T1 T2
l-S1(A)

l-S2(A)
l-X1(A)

l-X2(A)
--- Deadlock ---

CS 245 72

Update Locks

Solution

If Ti wants to read A and knows it may later
want to write A, it requests an update lock
(not shared lock)

CS 245 73

compat S X U
S T F
X F F
U

Lock
already
held in

CS 245 74

Compatibility Matrix
New request

compat S X U
S T F T
X F F F
U F F F

Lock
already
held in

CS 245 75

Compatibility Matrix
New request

Note: asymmetric table!

How Is Locking Implemented
In Practice?
Every system is different (e.g., may not even
provide conflict serializable schedules)

But here is one (simplified) way ...

CS 245 76

Sample Locking System

1. Don’t ask transactions to request/release
locks: just get the weakest lock for each
action they perform

2. Hold all locks until transaction commits

CS 245 77

#
locks

time

Sample Locking System

Under the hood: lock manager that keeps
track of which objects are locked
» E.g. hash table

Also need a good way to block transactions
until locks are available, and find deadlocks

CS 245 78

Which Objects Do We Lock?

?

CS 245 79

Table A

Table B

...

Tuple A
Tuple B
Tuple C

...

Disk
block

A

Disk
block

B

...

DB DB DB

Which Objects Do We Lock?

Locking works in any case, but should we
choose small or large objects?

CS 245 80

Which Objects Do We Lock?

Locking works in any case, but should we
choose small or large objects?

CS 245 81

If we lock large objects (e.g., relations)
– Need few locks
– Low concurrency

If we lock small objects (e.g., tuples, fields)
– Need more locks
– More concurrency

We Can Have It Both Ways!

Ask any janitor to give you the solution...

CS 245 82

hall

Stall 1 Stall 2 Stall 3 Stall 4

restroom

Example

CS 245 83

R1

t1
t2 t3 t4

Example

CS 245 84

R1

t1
t2 t3 t4

T1(IS)

T1(S)

Example

CS 245 85

R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(S)

Example 2

CS 245 86

R1

t1
t2 t3 t4

T1(IS)

T1(S)

Example 2

CS 245 87

R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(IX)

T2(IX)

compat Requestor
IS IX S SIX X

IS
Holder IX

S
SIX

X

T T T T F
F
F
F
FFFFF

FFFT
FTFT
FFTT

CS 245 88

Multiple Granularity Locks

compat Requestor
IS IX S SIX X

IS
Holder IX

S
SIX

X

T T T T F
F
F
F
FFFFF

FFFT
FTFT
FFTT

CS 245 89

Multiple Granularity Locks

Parent Child can be locked
locked in by same transaction in

IS
IX
S
SIX
X

P

C

IS, S
IS, S, IX, X, SIX
none
X, IX, SIX
none

CS 245 90

Rules Within A Transaction

Rules
(1) Follow multiple granularity comp function
(2) Lock root of tree first, any mode
(3) Node Q can be locked by Ti in S or IS only if

parent(Q) locked by Ti in IX or IS
(4) Node Q can be locked by Ti in X,SIX,IX only

if parent(Q) locked by Ti in IX,SIX
(5) Ti is two-phase
(6) Ti can unlock node Q only if none of Q’s

children are locked by Ti

CS 245 91

Exercise:
Can T2 access object f2.2 in X mode? What
locks will T2 get?

CS 245 92

R1

t1
t2 t3 t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(IX)

T1(X)

Exercise:
Can T2 access object f2.2 in X mode? What
locks will T2 get?

CS 245 93

R1

t1
t2 t3 t4T1(X)

f2.1 f2.2 f3.1 f3.2

T1(IX)

Exercise:
Can T2 access object f3.1 in X mode? What
locks will T2 get?

CS 245 94

R1

t1
t2 t3 t4T1(S)

f2.1 f2.2 f3.1 f3.2

T1(IS)

Exercise:
Can T2 access object f2.2 in S mode? What
locks will T2 get?

CS 245 95

R1

t1
t2 t3 t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

Exercise:
Can T2 access object f2.2 in X mode? What
locks will T2 get?

CS 245 96

R1

t1
t2 t3 t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

Insert + delete operations

Insert

CS 245 97

A

Z
a

...

Changes to Locking Rules:

1. Get exclusive lock on A before deleting A

2. At insert A operation by Ti, Ti is given
exclusive lock on A

CS 245 98

Still Have Problem: Phantoms

Example: relation R (id, name,…)
constraint: id is unique key
use tuple locking

R id Name ….
o1 55 Smith
o2 75 Jones

CS 245 99

T1: Insert <12,Mary,…> into R
T2: Insert <12,Sam,…> into R

T1 T2
S1(o1) S2(o1)
S1(o2) S2(o2)
Check Constraint Check Constraint

Insert o3[12,Mary,..]
Insert o4[12,Sam,..]

... ...

CS 245 100

Solution

Use multiple granularity tree

Before insert of node N,
lock parent(N) in X mode

CS 245 101

R1

t1
t2 t3

Back to example
T1: Insert<12,Mary> T2: Insert<12,Sam>

T1 T2

X1(R)

Check constraint
Insert<12,Mary>
U1(R)

X2(R)
Check constraint
Oops! e# = 12 already in R!

X2(R) delayed

CS 245 102

Instead of Using R, Can Use
Index Nodes for Ranges
Example:

CS 245 103

R

Index
0<E#<100

Index
100<E#<200

E#=2 E#=5 E#=107 E#=109...

...

...

Outline
What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation
CS 245 104

Next Class

Guest talk by Reynold Xin from Databricks:

Delta Lake: Making Cloud Data Lakes
Transactional and Scalable

105

The same concurrency issues we
saw happen in large data lakes
with billions of files… how to offer
transactions there?

