Concurrency Control

Instructor: Mateil Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

The Problem

T1 T2 ... Tn

DB
(consistency
constraints)

~

Different transactions may need to access data

items at the same time, violating constraints

CS 245 2

The Problem

Even if each transaction maintains constraints
by itself, interleaving their actions does not

Could try to run just one transaction at a time
(serial schedule), but this has problems
» Too slow! Especially with external clients & 10

High-Level Approach

Define isolation levels: sets of guarantees
about what transactions may experience

Strongest level: serializability (result is same
as some serial schedule)

Many others possible: snapshot isolation,
read committed, read uncommitted, ...

Outline

What makes a schedule serializable?
Conflict serializability
Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation

Example

T1: Read(A) T2: Read(A)
A < A+100 A « Ax2
Write(A) Write(A)
Read(B) Read(B)
B « B+100 B « Bx2
Write(B) Write(B)

Constraint: A=B

Schedule C

T1 12

Read(A); A <« A+100
Write(A);

Read(A); A « AX2;
Write(A);

Read(B); B «+ B+100;
Write(B);

Read(B); B « Bx2;
Write(B);

Schedule C

A B
S L 25|23
Read(A) A< A+100 T
Write(A); o5
Read(A); A < Ax2;
Write(A); 250
Read(B); B <~ B+100;
Write(B); .
Read(B); B « Bx2;
Write(B); 250
250 | 250

Schedule D

T1 T2

Read(A); A« A+100

Write(A);
Read(A); A « Ax2;
Write(A);
Read(B); B « Bx2;
Write(B);

Read(B); B <~ B+100:;

Write(B);

Schedule D

T1 T2

Read(A); A <« A+100

Write(A);
Read(A); A <« Ax2;
Write(A);
Read(B); B <« Bx2;
Write(B);

Read(B); B <~ B+100:;

Write(B);

250

50

150
150

Our Goal

Want schedules that are “good”, regardless of
» mltlal Sta_te and _ We don’t know the logic
» transaction semantics < in external client apps!

Only look at order of read & write operations
Example:

Sc = ri(A)w1(A)rz2(A)w2(A)r1(B)w1(B)rz2(B)w2(B)

Example:

Se = r1(AW1(A)r2(A)w2(A)r1(B)w (B)rz(B)w2(B)

N AN J
Y Y

=

Se’ = F(AW(A) (B)wi(B)r2(A)w2(A)rz(B)wz(B)
/

N AL
Y Y

T4 T2

00000

However, for Sp:

Sp = ri(A)w1(A)r2(A)wz(A) r2(B)w2(B)r1(B)w1(B)

J
V
N /

N~
7\

Another way to view this:

» rq(B) after w,(B) means T, should be after T, in an
equivalent serial schedule (T, —> T,)

» I,(A) after w,(A) means T, should be after T, in an
equivalent serial schedule (T, > T,)

» Can’t have both of these!

Outline

What makes a schedule serializable?
Conflict serializability
Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation

Concepts

Transaction: sequence of r,(x), w;(x) actions

Conflicting actions: r,(A) w,(A) w,(A)

<

Wo(A) (A) Wy(A)

Schedule: a chronological order in which all the
transactions’ actions are executed

Serial schedule: no interleaving of actions from
different transactions

Question

Is it OK to model reads & writes as occurring
at a single point in time in a schedule?

Question

What about conflicting, concurrent actions on
same object?

start r,(A) end r,(A)

. .
t t

start w,(A) end w,(A)

time

Assume “atomic actions” that only occur at one

point in time (e.g. implement using locking)

CS 245 17

Definition

S4, S, are conflict equivalent schedules if
S, can be transformed into S, by a series of
swaps of non-conflicting actions

(i.e., can reorder non-conflicting operations in
S, to obtain S,)

Definition

A schedule is conflict serializable if it is
conflict equivalent to some serial schedule

Key idea:
» Conflicts “change” result of reads and writes
» Conflict serializable means there exists

some equivalent serial execution that does
not change the effects

How can we compute whether a schedule is

conflict serializable?

Outline

What makes a schedule serializable?
Conflict serializability
Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation

Precedence Graph P(S)

Nodes: transactions in a schedule S

Edges: T, —» T, whenever
» Pi(A), qi(A) are actions in S
» Pi(A) <s q;(A) (occurs earlier in schedule)
» at least one of p;, q; is a write (i.e. conflict)

Exercise

What is P(S) for

S = w3(A) wy(C) ry(A) wy(B) r{(C) wy(A) ra(A) wy(D)

Is S serializable?

Another Exercise

What is P(S) for
S = Wq(A) ry(A) r3(A) wy(A)

Lemma

Sq, S, conflict equivalent = P(S,)=P(S,)

Lemma

S1, S2 conflict equivalent = P(S1)=P(S2)

Proof:
Assume P(S,) # P(S,)

=3 T;: T,—> T;in S;and not in S,

= S, = ...p(A)... Gi(A)...

Sy, = ..qi(A)... pi(A)...

<

= S,, S, not conflict equivalent

/

.

Pi: G
conflict

Note: P(S1)=P(S2) A S1, Sz conflict equivalent

Note: P(S1)=P(S2) A S1, Sz conflict equivalent

Counter example:

S1= W4(A) ry(A) wy(B) ry(B)

S, = r(A) wy(A) ry(B) wy(B)

Theorem

P(S,) acyclic <= S, conflict serializable

(<) Assume S, is conflict serializable
= 31 S, (serial): S, S; conflict equivalent
= P(S,) = P(S,) (by previous lemma)
= P(S,) acyclic since P(S,) is acyclic

Theorem

P(S,) acyclic <= S, conflict serializable 1
AN
T2 T3

S N/
T4

Theorem

P(S,) acyclic <= S, conflict serializable 1
/N

(=) Assume P(S1) is acyclic T2 T3

Transform S1 as follows: / \T4/

(1) Take T1 to be transaction with no inbound edges
(2) Move all T1 actions to the front

(3) we now have S1 = <T1 actions><... rest ...>
(4) repeat above steps to serialize rest!

Outline

What makes a schedule serializable?
Conflict serializability
Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation

How to Enforce Serializable
Schedules?

Option 1: run system, recording P(S); at end
of day, check for cycles in P(S) and declare
whether execution was good

How to Enforce Serializable
Schedules?

Option 2: prevent P(S) cycles from occurring

T, T, ... T,
N\ o
Scheduler

A Locking Protocol

Two new actions:

lock: |. (A) < Transaction i locks object A

unlock: u; (A)

T4 l sz

scheduler

]

lock
table

Rule #1: Well-Formed
Transactions

Ti: ... L(A) ... r(A) ... u(A) ...

Transactions can only operate on locked items

CS 245

Rule #2: Legal Scheduler

Only one transaction can lock item at a time

CS 245

Exercise

Which schedules are legal?
Which transactions are well-formed?

S1=11(A) 1(B) ri(A) wq(B) I5(B) ui(A) us(B)
r,(B) wy(B) ux(B) 13(B) r3(B) us(B)

S, = 11(A) ri(A) wi(B) us(A) uy(B) 1(B) ra(B)
w,(B) I3(B) r3(B) us(B)

Sz = [1(A) ry(A) uy(A) 14(B) w4(B) uy(B) 1(B)
r,(B) wy(B) uy(B) 15(B) r3(B) us(B)

Exercise

Which schedules are legal?
Which transactions are well-formed?

S1 =LA L (B) (A >w1(B u(A) Uy(B)
r,(B) wo(B) uy(B) 15(B 3) uz(B)

) ry(AY@W+(B) ’ 1(A)u B) r,(B)
6r) us(B m|ssmg

A) ry(A) uq(w4(B) u4(B)
|2(B) r,(B)Wz(B) U2() 3(B) r3(B) u;(B)

Schedule F

T1 T2 25 | 25
11(A);Read(A)

A—A+100;Write(A);u1(A) 125
12(A);Read(A)
A—Ax2;Write(A);u2(A) 250
12(B);Read(B)
B«—Bx2;Write(B);u2(B) 50

11(B);Read(B)
B—B+100;Write(B);u1(B) 150
250 | 150

Rule #3: 2-Phase Locking (2PL)

no unlocks no locks

Transactions first lock all items they need, then
unlock them

CS 245 40

2-Phase Locking (2PL)

locks
held by

» Time

Growing
Phase

Schedule G

T1 12

11(A);Read(A)
A—A+100;Write(A)
11(B);u1(A)

Schedule G

T1 12

11(A);Read(A)
A—A+100;Write(A)
11(B);u1(A)
12(A);Read(A)
A—Ax2;Write(A)
12(B) <«— delayed

Schedule G

T1 12

11(A);Read(A)
A—A+100;Write(A)
11(B);u1(A)
12(A);Read(A)
A—Ax2;Write(A)
12(B) <«— delayed
Read(B);B—B+100
Write(B);u1(B)

Schedule G

T1 12

11(A);Read(A)
A—A+100;Write(A)
11(B);u1(A)
12(A);Read(A)
A—Ax2;Write(A)
12(B) <«— delayed
Read(B);B—B+100
Write(B);u1(B)
12(B);u2(A);Read(B)
B—Bx2;Write(B);uz(B)

Schedule H (T2 Ops Reversed)

T1 T2
11(A); Read(A) 12(B); Read(B)
A—A+100; Write(A) | B«—Bx2; Write(B)
11(B) < delayed 12(A) «— delayed

(T2 holds B) (T1 holds A)

Problem: Deadlock between transactions

CS 245 46

Dealing with Deadlock

Option 1: Detect deadlocks and roll back one
of the deadlocked transactions

» The rolled back transaction no longer appears
In our schedule

Option 2: Agree on an order to lock items in
that prevents deadlocks
» E.g. transactions acquire locks in key order
» Must know which items T; will need up front!

Is 2PL Correct?

Yes! We can prove that following rules #1,2,3
gives conflict-serializable schedules

Conflict Rules for Lock Ops

(A), I,(A) conflict
(A), u;(A) conflict

Note: no conflict <u;(A), ui(A)>, <li(A), r;(A)>,...

Theorem

Rules #1,2,3 = conflict-serializable schedule
(2PL)

To help in proof:
Definition: Shrink(Ti) = SH(Ti) =
first unlock action of Ti

Lemma

Ti—> Tjin S = SH(Ti) <g SH(T)j)

Proof:
Ti — Tj means that

S=...pA) ... q(A)...; p,qconflict
By rules 1, 2:

S=...pA) ... u(A) ... [(A) ... gi(A) ...

Byrule3: SH(T) SH(T))
So, SH(Ti) << SH(T;j)

Theorem: Rules #1,2,3 =
Conflict Serializable Schedule

Proof:

(1) Assume P(S) has cycle
TM->T2—>....Th—>T1

(2) By lemma: SH(T1) < SH(T2) < ... < SH(T1)

(3) Impossible, so P(S) acyclic

(4) = S is conflict serializable

2PL Subset of Serializable

Serializable

CCCCC

Serializable
s

S1: w(X) w;(X) wy(Y) wy(Y)

S1 cannot be achieved via 2PL.:
The lock by T1 for Y must occur after w,(Y), so the
unlock by T1 for X must occur after this point (and

before w4(X)). Thus, w;(X) cannot occur under 2PL
where shown in S1.

But S1 is serializable: equivalent to T2, T1, T3.

If You Need More Practice

Are our schedules S and Sy 2PL schedules?
Sci Wq(A) Wy(A) wy(B) w,(B)

Sp: W4(A) Wy (A) wy(B) wy(B)

Optimizing Performance

Beyond this simple 2PL protocol, it is all a
matter of improving performance and
allowing more concurrency....

» Shared locks

» Multiple granularity

» Inserts, deletes and phantoms

» Other types of C.C. mechanisms

Shared Locks

So far:

S = _...11(A) ri(A) ui(A) ... I2(A) rz(A) uz2(A) ...

~

Do not conflict

Shared Locks

So far:

S = _...11(A) ri(A) ui(A) ... I2(A) rz(A) uz2(A) ...

~

Do not conflict

Instead:
S=... 1s4(A) ri(A) Is5(A) ry(A) us(A) us,(A)

Multiple Lock Modes

Lock actions
I-m,(A): lock Ain mode m (m is S or X)
u-m,(A): unlock mode m (mis S or X)

Shorthand:
ui(A): unlock whatever modes Ti has locked A

Rule 1: Well-Formed
Transactions

Ti=...-S1(A) ... r1i(A) ... u1 (A) ...
Ti=... [-X1(A) ... w1(A) ... u1 (A) ...

Transactions must acquire the right lock type
for their actions (S for read only, X for r/w).

CS 245 61

Rule 1: Well-Formed
Transactions

What about transactions that read and write
same object?

Option 1: Request exclusive lock

T1 = . -X,(A) ... r((A) ... wi(A) ... u(A) ...

Rule 1: Well-Formed
Transactions

What about transactions that read and write
same object?

Option 2: Upgrade lock to X on write
T1 = -S;(A)...r (A)...I- X, (A). .. wy (A)...u(A)...

(Think of this as getting a 2" lock, or dropping S to get X.)

Rule 2: Legal Scheduler

S=_.ISi(A)ui(A)...
<no |-x,-(A)=

S= .. IX(A) ui(A)...
r;o I-Xj(A)'

no I-Sj(A)

A Way to Summarize Rule #2

Lock mode compatibility matrix

compat = S X
true false
X | false | false

o)

Rule 3: 2PL Transactions

No change except for upgrades:
(I) If upgrade gets more locks

(e.g., S —> {S, X}) then no change!
(I1) If upgrade releases read lock (e.g., S—X)

can be allowed in growing phase

Rules 1,2,3 = Conf. Serializable
Schedules for S/X Locks

Proof: similar to X locks case

Detail:

I-mi(A), I-nj(A) do not conflict if compat(m,n)

I-mi(A), u-nj(A) do not conflict if compat(m,n)

Lock Modes Beyond S/X

Examples:
(1) increment lock

(2) update lock

Example 1: Increment Lock

Atomic addition action: IN;(A)
{Read(A); A « A+k; Write(A)}

IN;(A), IN;(A) do not conflict, because addition
IS commutative!

Compatibility Matrix

compat S| X ||

Compatibility Matrix

compat

)
L A e T s B 0

X
=
=
=

— | T | T

Update Locks

A common deadlock problem with upgrades:

T1 T2
I-S1(A)

I-S2(A)
I-X1(A)

I-X2(A)

--- Deadlock ---

CS 245 79

Solution

If Ti wants to read A and knows it may later
want to write A, it requests an update lock
(not shared lock)

Compatibility Matrix

New request
A

-

compat S | X | U
S| T |F
Lock
alrz(;dy < X F F
held in U

Compatibility Matrix

New request
A

compat S| X | U
S| T F|T

Lock _
alrg(;(_jy 5 X F B F
held in i U = ~ =

Note: asymmetric table!

CS 245

How Is Locking Implemented
In Practice?

Every system is different (e.g., may not even
provide conflict serializable schedules)

But here is one (simplified) way ...

Sample Locking System

1. Don’t ask transactions to request/release
locks: just get the weakest lock for each

action they perform

2. Hold all locks until transaction commits

locks

time

Sample Locking System

Under the hood: lock manager that keeps
track of which objects are locked

» E.9. hash table

Also need a good way to block transactions
until locks are available, and find deadlocks

Which Objects Do We Lock?

Table A | | |UPl€A Disk
Tuple B block
Table B Tuple C A
Disk
block
B

DB DB DB

Which Objects Do We Lock?

Locking works in any case, but should we
choose small or large objects?

Which Objects Do We Lock?

Locking works in any case, but should we
choose small or large objects?

If we lock large objects (e.g., relations)
— Need few locks
— Low concurrency
If we lock small objects (e.g., tuples, fields)
—Need more locks
— More concurrency

We Can Have It Both Ways!

Ask any janitor to give you the solution...

Stall 1 | Stall2 | Stall3 | Stall 4
A

restroom

Example

Example

CCCCC

T1(1S)

Example

CCCCC

T1(1S), T2(S)

Example 2

CCCCC

T1(1S)

Example 2 a0

¢ é :5

CCCCC

Multiple Granularity Locks

compat Requestor
IS IX S SIX X
1S
Holder |IX
S
SIX
X

Multiple Granularity Locks

compat Requestor
S IX S SIX X

S| T| T | T | T]F

Holder IXI T|T|F|F|F
SITIEITIEIE

SIX\T | F|F|F|F

x| F|F|F|FI|F

Rules Within A Transaction

Parent Child can be locked
locked In by same transaction in

1S 1S, S
IX 1S, S, IX, X, SIX

S none

SIX X, IX, SIX
X none

Rules

(1) Follow multiple granularity comp function

(2) Lock root of tree first, any mode

(3) Node Q can be locked by Tiin S or IS only if
parent(Q) locked by Tiin IX or IS

(4) Node Q can be locked by Ti in X,SIX,IX only
If parent(Q) locked by Ti in IX,SIX

(5) Ti is two-phase

(6) Ti can unlock node Q only if none of Q’s
children are locked by Ti

Exercise:

Can T2 access object f2.2 in X mode? What
locks will T2 get?

R1 \
G to @

& ® ® &

Exercise:

Can T2 access object f2.2 in X mode? What
locks will T2 get?

R1 \
G to @

& o & &

Exercise:

Can T2 access object f3.1 in X mode? What
locks will T2 get?

R1 \
G to @

& o & &

Exercise:

Can T2 access object f2.2 in S mode? What
locks will T2 get?

R1 \
G to @

& ® ® &

Exercise:

Can T2 access object f2.2 in X mode? What
locks will T2 get?

R1 \
G to @

& ® ® &

Insert + delete operations

Insert

Changes to Locking Rules:

1. Get exclusive lock on A before deleting A

2. Atinsert A operation by Ti, Ti is given
exclusive lock on A

Still Have Problem: Phantoms

Example: relation R (id, name,...)
constraint: id is unique key
use tuple locking

R id Name
o1| 55 | Smith
02| 75 |Jones

T1: Insert <12,Mary,...> intfo R
T2: Insert <12,Sam,...> into R

T1 T2

S1(01) S2(01)

S1(02) S2(02)

Check Constraint Check Constraint

Insert 03[12,Mary,..]
Insert 04[12,Sam,..]

Solution

Use multiple granularity tree

Before insert of node N,
lock parent(N) in X mode @

/
YE

Back to example

T1: Insert<12,Mary> T2: Insert<12,Sam>
T1 T2

X1(R)

Check constraint
Insert<12,Mary>
Ui(R)
- X2(R)

- Check constraint

~ Oops! e# = 12 already in R!

Instead of Using R, Can Use
Index Nodes for Ranges

Example:

Index
100<E#<200

Outline

What makes a schedule serializable?
Conflict serializability
Precedence graphs

Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation

Next Class

Guest talk by Reynold Xin from Databricks:

Delta Lake: Making Cloud Data Lakes
Transactional and Scalable

The same concurrency issues we
saw happen in large data lakes
with billions of files... how to offer
transactions there?

DELTA LAKE

