
Concurrency Control

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Outline
What makes a schedule serializable?
Conflict serializability

Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation

Concurrency control + recovery

CS 245 2

Lock Modes Beyond S/X

Examples:

(1) increment lock

(2) update lock

CS 245 3

Example 1: Increment Lock

Atomic addition action: INi(A)

{Read(A); A ¬ A+k; Write(A)}

INi(A), INj(A) do not conflict, because addition
is commutative!

CS 245 4

Compatibility Matrix

compat S X I

S T F F

X F F F

I F F T

CS 245 5

A common deadlock problem with upgrades:

T1 T2
l-S1(A)

l-S2(A)
l-X1(A)

l-X2(A)
--- Deadlock ---

CS 245 6

Update Locks

Solution

If Ti wants to read A and knows it may later
want to write A, it requests an update lock
(not shared lock)

CS 245 7

compat S X U
S T F
X F F
U

Lock
already
held in

CS 245 8

Compatibility Matrix
New request

compat S X U
S T F T
X F F F
U F F F

Lock
already
held in

CS 245 9

Compatibility Matrix
New request

Note: asymmetric table!

How Is Locking Implemented
In Practice?
Every system is different (e.g., may not even
provide conflict serializable schedules)

But here is one (simplified) way ...

CS 245 10

Sample Locking System

1. Don’t ask transactions to request/release
locks: just get the weakest lock for each
action they perform

2. Hold all locks until transaction commits

CS 245 11

#
locks

time

Sample Locking System

Under the hood: lock manager that keeps
track of which objects are locked
» E.g. hash table

Also need a good way to block transactions
until locks are available, and find deadlocks

CS 245 12

Which Objects Do We Lock?

?

CS 245 13

Table A

Table B

...

Tuple A
Tuple B
Tuple C

...

Disk
block

A

Disk
block

B

...

DB DB DB

Which Objects Do We Lock?

Locking works in any case, but should we
choose small or large objects?

CS 245 14

Which Objects Do We Lock?

Locking works in any case, but should we
choose small or large objects?

CS 245 15

If we lock large objects (e.g., relations)
– Need few locks
– Low concurrency

If we lock small objects (e.g., tuples, fields)
– Need more locks
– More concurrency

We Can Have It Both Ways!

Ask any janitor to give you the solution...

CS 245 16

hall

Stall 1 Stall 2 Stall 3 Stall 4

restroom

Example

CS 245 17

R1

t1
t2 t3 t4

Example

CS 245 18

R1

t1
t2 t3 t4

T1(IS)

T1(S)

Example

CS 245 19

R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(S)

Example 2

CS 245 20

R1

t1
t2 t3 t4

T1(IS)

T1(S)

Example 2

CS 245 21

R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(IX)

T2(X)

Example 3

CS 245 22

R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(S), T3(IX)?

compat Requestor
IS IX S SIX X

IS
Holder IX

S
SIX

X

T T T T F
F
F
F
FFFFF

FFFT
FTFT
FFTT

CS 245 23

Multiple Granularity Locks

compat Requestor
IS IX S SIX X

IS
Holder IX

S
SIX

X

T T T T F
F
F
F
FFFFF

FFFT
FTFT
FFTT

CS 245 24

Multiple Granularity Locks

Parent Child can be locked
locked in by same transaction in

IS
IX
S
SIX
X

P

C

IS, S
IS, S, IX, X, SIX
none
X, IX, SIX
none

CS 245 25

Rules Within A Transaction

Multi-Granularity 2PL Rules
1. Follow multi-granularity compat function
2. Lock root of tree first, any mode
3. Node Q can be locked by Ti in S or IS only if

parent(Q) locked by Ti in IX or IS
4. Node Q can be locked by Ti in X, SIX, IX only if

parent(Q) locked by Ti in IX, SIX
5. Ti is two-phase
6. Ti can unlock node Q only if none of Q’s

children are locked by Ti

CS 245 26

Exercise:
Can T2 access object f2.2 in X mode? What
locks will T2 get?

CS 245 27

R1

t1
t2 t3 t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(IX)

T1(X)

Exercise:
Can T2 access object f2.2 in X mode? What
locks will T2 get?

CS 245 28

R1

t1
t2 t3 t4T1(X)

f2.1 f2.2 f3.1 f3.2

T1(IX)

Exercise:
Can T2 access object f3.1 in X mode? What
locks will T2 get?

CS 245 29

R1

t1
t2 t3 t4T1(S)

f2.1 f2.2 f3.1 f3.2

T1(IS)

Exercise:
Can T2 access object f2.2 in S mode? What
locks will T2 get?

CS 245 30

R1

t1
t2 t3 t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

Exercise:
Can T2 access object f2.2 in X mode? What
locks will T2 get?

CS 245 31

R1

t1
t2 t3 t4T1(IX)

f2.1 f2.2 f3.1 f3.2

T1(SIX)

T1(X)

Insert + Delete Operations

Insert

CS 245 32

A

Z
a

...

Changes to Locking Rules:

1. Get exclusive lock on A before deleting A

2. At insert A operation by Ti, Ti is given
exclusive lock on A

CS 245 33

Still Have Problem: Phantoms

Example: relation R (id, name,…)
constraint: id is unique key
use tuple locking

R id Name ….
o1 55 Smith
o2 75 Jones

CS 245 34

T1: Insert <12,Mary,…> into R
T2: Insert <12,Sam,…> into R

T1 T2
S1(o1) S2(o1)
S1(o2) S2(o2)
Check Constraint Check Constraint

Insert o3[12,Mary,..]
Insert o4[12,Sam,..]

... ...

CS 245 35

Solution

Use multiple granularity tree

Before insert of node N,
lock parent(N) in X mode

CS 245 36

R1

t1 t2 t3

Back to Example
T1: Insert<12,Mary> T2: Insert<12,Sam>

T1 T2

X1(R)

Check constraint
Insert<12,Mary>
U1(R)

X2(R)
Check constraint
Oops! e# = 12 already in R!

X2(R) delayed

CS 245 37

Instead of Using R, Can Use
Index Nodes for Ranges

Example:

CS 245 38

...

...

...

R

Index
100<id≤200

Index
0<id≤100

id=2 id=5 id=107 id=109

Outline
What makes a schedule serializable?
Conflict serializability

Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation

Concurrency control + recovery

CS 245 39

Validation Approach
Transactions have 3 phases:

1. Read
» Read all DB values needed
» Write to temporary storage
» No locking

2. Validate
» Check whether schedule so far is serializable

3. Write
» If validate OK, write to DB

CS 245 40

Key Idea

Make validation atomic

If T1, T2, T3, … is the validation order, then
resulting schedule will be conflict equivalent
to Ss = T1, T2, T3, …

CS 245 41

Implementing Validation

System keeps track of two sets:

FIN = transactions that have finished phase 3
(write phase) and are all done

VAL = transactions that have successfully
finished phase 2 (validation)

CS 245 42

Example That Validation Must Prevent:

RS(T2)={B} RS(T3)={A,B}

WS(T2)={B,D} WS(T3)={C}

CS 245 43

time

T2
start

T2
validated

T3
validated

T3
start

Ç
≠ ∅

T2
finish

phase 3

Example That Validation Must Prevent:

RS(T2)={B} RS(T3)={A,B}

WS(T2)={B,D} WS(T3)={C}

CS 245 44

time

T2
start

T2
validated

T3
validated

T3
start

Allow

T3
start

Ç
≠ ∅

Another Thing Validation Must Prevent:

RS(T2)={A} RS(T3)={A,B}

WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

CS 245 45

RS(T2)={A} RS(T3)={A,B}

WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

BAD: w3(D) w2(D)

CS 245 46

Another Thing Validation Must Prevent:

finish
T2

RS(T2)={A} RS(T3)={A,B}

WS(T2)={D,E} WS(T3)={C,D}

time

T2
validated

T3
validated

finish
T2

CS 245 47

Another Thing Validation Must Prevent:
Allow

Validation Rules for Tj:

when Tj starts phase 1:
ignore(Tj) ¬ FIN

at Tj Validation:
if Check(Tj) then

VAL ¬ VAL ∪ {Tj}
do write phase
FIN ¬ FIN ∪ {Tj}

CS 245 48

Check(Tj)

for Ti Î VAL – ignore(Tj) do
if (WS(Ti) ∩ RS(Tj) ≠ ∅ or

(Ti Ï FIN and WS(Ti) ∩ WS(Tj) ≠ ∅))
then return false

return true

CS 245 49

Exercise

T: RS(T)={A,B}
WS(T)={A,C}

V: RS(V)={B}
WS(V)={D,E}

U: RS(U)={B}
WS(U)={D}

W: RS(W)={A,D}
WS(W)={A,C}

start
validate
finish

CS 245 50

Is Validation = 2PL?

CS 245 51

2PL
Val

2PL
Val

2PL
Val

Val
2PL

S: w2(y) w1(x) w2(x)

Achievable with 2PL?

Achievable with validation?

CS 245 52

S: w2(y) w1(x) w2(x)

S can be achieved with 2PL:
l2(y) w2 (y) l1(x) w1(x) u1(x) l2(x) w2(x) u2(x) u2(y)

S cannot be achieved by validation:
The validation point of T2, val2, must occur before w2(y)
since transactions do not write to the database until after
validation. Because of the conflict on x, val1 < val2, so we
must have something like:

S: val1 val2 w2(y) w1(x) w2(x)

With the validation protocol, the writes of T2 should not
start until T1 is all done with writes, which is not the case.

CS 245 53

Validation Subset of 2PL?
Possible proof (Check!):
» Let S be validation schedule
» For each T in S insert lock/unlocks, get S’:

• At T start: request read locks for all of RS(T)
• At T validation: request write locks for WS(T);

release read locks for read-only objects
• At T end: release all write locks

» Clearly transactions well-formed and 2PL
» Must show S’ is legal (next slide)

CS 245 54

Say S’ not legal (due to w-r conflict):
S’: ... l1(x) w2(x) r1(x) val1 u1(x) ...
» At val1: T2 not in Ignore(T1); T2 in VAL
» T1 does not validate: WS(T2) Ç RS(T1) ¹ Æ
» contradiction!

Say S’ not legal (due to w-w conflict):
S’: ... val1 l1(x) w2(x) w1(x) u1(x) ...
» Say T2 validates first (proof similar if T1 validates first)
» At val1: T2 not in Ignore(T1); T2 in VAL
» T1 does not validate:

T2 Ï FIN AND WS(T1) Ç WS(T2) ¹ Æ)
» contradiction!

CS 245 55

Validation Subset of 2PL?

Is Validation = 2PL?

CS 245 56

2PL
Val

2PL
Val

2PL
Val

Val
2PL

When to Use Validation?

Validation performs better than locking when:
» Conflicts are rare
» System resources are plentiful
» Have tight latency constraints

CS 245 57

Summary

Have studied several concurrency control
mechanisms used in practice
» 2 PL
» Multiple granularity
» Validation

Next: how does concurrency control interact
with failure recovery?

CS 245 58

Outline
What makes a schedule serializable?
Conflict serializability

Precedence graphs
Enforcing serializability via 2-phase locking
» Shared and exclusive locks
» Lock tables and multi-level locking

Optimistic concurrency with validation

Concurrency control + recovery

CS 245 59

