Concurrency Control

Instructor: Matei Zaharia

cs245.stanford.edu

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking

- » Shared and exclusive locks
- » Lock tables and multi-level locking

Optimistic concurrency with validation

Concurrency control + recovery

Lock Modes Beyond S/X

Examples:

- (1) increment lock
- (2) update lock

Example 1: Increment Lock

Atomic addition action: IN_i(A)

 $\{Read(A); A \leftarrow A+k; Write(A)\}$

IN_i(A), IN_j(A) do not conflict, because addition is commutative!

Compatibility Matrix

compat

	S	X	
S	Т	F	F
X	F	F	L
	F	F	Т

Update Locks

A common deadlock problem with upgrades:

T1	T2
I-S ₁ (A)	
	I-S ₂ (A)
I-X ₁ (A)	
	I-X ₂ (A)

--- Deadlock ---

Solution

If Ti wants to read A and knows it may later want to write A, it requests an **update lock** (not shared lock)

Compatibility Matrix

Compatibility Matrix

Note: asymmetric table!

How Is Locking Implemented In Practice?

Every system is different (e.g., may not even provide conflict serializable schedules)

But here is one (simplified) way ...

Sample Locking System

- Don't ask transactions to request/release locks: just get the weakest lock for each action they perform
- 2. Hold all locks until transaction commits

Sample Locking System

Under the hood: lock manager that keeps track of which objects are locked » E.g. hash table

Also need a good way to block transactions until locks are available, and find deadlocks

Which Objects Do We Lock?

Table A

Table B

-

DB

Tuple A

Tuple B

Tuple C

.

DB

Disk block

Α

Disk

block

В

•

DB

Which Objects Do We Lock?

Locking works in any case, but should we choose **small** or **large** objects?

Which Objects Do We Lock?

Locking works in any case, but should we choose **small** or **large** objects?

If we lock large objects (e.g., relations)

- Need few locks
- Low concurrency

If we lock small objects (e.g., tuples, fields)

- Need more locks
- More concurrency

We Can Have It Both Ways!

Ask any janitor to give you the solution...

Multiple Granularity Locks

Multiple Granularity Locks

compat	Requestor					
		IS	IX	S	SIX	X
	IS	\vdash	T	Т	1	F
Holder	IX	Т	Т	F	F	F
	S	Т	F	Т	F	F
	SIX	Т	F	F	F	F
	X	F	F	F	F	F

Rules Within A Transaction

Parent	Child can be locked		
locked in	by same transaction in		
IS	IS, S		
IX	IS, S, IX, X, SIX		
S	none		
SIX	X, IX, SIX		
X	none		

Multi-Granularity 2PL Rules

- 1. Follow multi-granularity compat function
- 2. Lock root of tree first, any mode
- Node Q can be locked by Ti in S or IS only if parent(Q) locked by Ti in IX or IS
- Node Q can be locked by Ti in X, SIX, IX only if parent(Q) locked by Ti in IX, SIX

26

- 5. Ti is two-phase
- 6. Ti can unlock node Q only if none of Q's children are locked by Ti

Can T₂ access object f2.2 in X mode? What locks will T₂ get?

Can T₂ access object f2.2 in X mode? What locks will T₂ get?

CS 245

28

Can T₂ access object f3.1 in X mode? What locks will T₂ get?

Can T₂ access object f2.2 in S mode? What locks will T₂ get?

Can T₂ access object f2.2 in X mode? What locks will T₂ get?

Insert + Delete Operations

Changes to Locking Rules:

- 1. Get exclusive lock on A before deleting A
- At insert A operation by Ti, Ti is given exclusive lock on A

Still Have Problem: Phantoms

Example: relation R (id, name,...)

constraint: id is unique key

use tuple locking

R id Name
 o1 55 Smith
 o2 75 Jones

T1: Insert <12, Mary,...> into R T2: Insert <12, Sam,...> into R

T1	T2
S1(01)	S2(01)
S1(02)	S2(o2)
Check Constraint	Check Constraint
insert o3[12,Mary,]	insert o4[12,Sam,]

Solution

Use multiple granularity tree

36

Back to Example

T1: Insert<12,Mary>	T2: Insert<12,Sam>
T ₁	T ₂
X1(R)	
	X2(R) delayed
Check constraint Insert<12,Mary> U ₁ (R)	
	X ₂ (R) Check constraint Oops! e# = 12 already in R!

Instead of Using R, Can Use Index Nodes for Ranges

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking

- » Shared and exclusive locks
- » Lock tables and multi-level locking

Optimistic concurrency with validation

Concurrency control + recovery

Validation Approach

Transactions have 3 phases:

- 1. Read
 - » Read all DB values needed
 - » Write to temporary storage
 - » No locking
- 2. Validate
 - » Check whether schedule so far is serializable
- 3. Write
 - » If validate OK, write to DB

Key Idea

Make validation atomic

If T_1 , T_2 , T_3 , ... is the validation order, then resulting schedule will be conflict equivalent to $S_s = T_1$, T_2 , T_3 , ...

Implementing Validation

System keeps track of two sets:

FIN = transactions that have finished phase 3 (write phase) and are all done

VAL = transactions that have successfully finished phase 2 (validation)

Example That Validation Must Prevent:

time

Example That Validation Must Prevent:

RS(T2)={B} RS(T3)={A,B}
$$\neq \emptyset$$

WS(T2)={B,D} WS(T3)={C}

Another Thing Validation Must Prevent:

$$RS(T_2)=\{A\}$$
 $RS(T_3)=\{A,B\}$

$$WS(T2)=\{D,E\}$$
 $WS(T3)=\{C,D\}$

Another Thing Validation Must Prevent:

$$RS(T_2)=\{A\}$$
 $RS(T_3)=\{A,B\}$

$$WS(T2)=\{D,E\}$$
 $WS(T3)=\{C,D\}$

CS 245

46

Another Thing Validation Must Prevent:

$$RS(T_2)=\{A\}$$
 $RS(T_3)=\{A,B\}$

$$WS(T2)=\{D,E\}$$
 $WS(T3)=\{C,D\}$

Validation Rules for Tj:

```
when Ti starts phase 1:
     ignore(Tj) \leftarrow FIN
at Tj Validation:
     if Check(Tj) then
          VAL \leftarrow VAL \cup \{Ti\}
          do write phase
          FIN \leftarrow FIN \cup \{Ti\}
```

Check(Tj)

```
for Ti \in VAL - ignore(Tj) do if (WS(Ti) \cap RS(Tj) \neq \emptyset or (Ti \notin FIN \text{ and } WS(Ti) \cap WS(Tj) \neq \emptyset)) then return false return true
```

Exercise

△ start⊕ validate☆ finish

Is Validation = 2PL?

S: $w_2(y) w_1(x) w_2(x)$

Achievable with 2PL?

Achievable with validation?

S: $w_2(y) w_1(x) w_2(x)$

S can be achieved with 2PL:

$$I_2(y) w_2(y) I_1(x) w_1(x) u_1(x) I_2(x) w_2(x) u_2(x) u_2(y)$$

S cannot be achieved by validation:

The validation point of T_2 , val_2 , must occur before $w_2(y)$ since transactions do not write to the database until after validation. Because of the conflict on x, $val_1 < val_2$, so we must have something like:

S: $val_1 \ val_2 \ w_2(y) \ w_1(x) \ w_2(x)$

With the validation protocol, the writes of T_2 should not start until T_1 is all done with writes, which is not the case.

53

Validation Subset of 2PL?

Possible proof (Check!):

- » Let S be validation schedule
- » For each T in S insert lock/unlocks, get S':
 - At T start: request read locks for all of RS(T)
 - At T validation: request write locks for WS(T); release read locks for read-only objects
 - At T end: release all write locks
- » Clearly transactions well-formed and 2PL
- » Must show S' is legal (next slide)

Validation Subset of 2PL?

```
Say S' not legal (due to w-r conflict):
S': ... I1(x) w2(x) r1(x) val1 u1(x) ...
 » At val1: T2 not in Ignore(T1); T2 in VAL
 » T1 does not validate: WS(T2) \cap RS(T1) \neq \emptyset
 » contradiction!
Say S' not legal (due to w-w conflict):
S': ... val1 11(x) w2(x) w1(x) u1(x) ...
 » Say T2 validates first (proof similar if T1 validates first)
 » At val1: T2 not in Ignore(T1); T2 in VAL
 » T1 does not validate:
   T2 \notin FIN AND WS(T1) \cap WS(T2) \neq \emptyset
```

CS 245

» contradiction!

Is Validation = 2PL?

When to Use Validation?

Validation performs better than locking when:

- » Conflicts are rare
- » System resources are plentiful
- » Have tight latency constraints

Summary

Have studied several concurrency control mechanisms used in practice

- » 2 PL
- » Multiple granularity
- » Validation

Next: how does concurrency control interact with failure recovery?

Outline

What makes a schedule serializable?

Conflict serializability

Precedence graphs

Enforcing serializability via 2-phase locking

- » Shared and exclusive locks
- » Lock tables and multi-level locking

Optimistic concurrency with validation

Concurrency control + recovery