Distributed Databases

Instructor: Mateil Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Outline

Replication strategies
Partitioning strategies
AC & 2PC

CAP

Avoiding coordination

Parallel query execution

CS 245

Atomic Commitment

Informally: either all participants commit a
transaction, or none do

“participants” = partitions involved in a given
transaction

So, What’s Hard?

All the problems as consensus...

...plus, if any node votes to abort, all must
decide to abort

» In consensus, simply need agreement on
“some” value

Two-Phase Commit

Canonical protocol for atomic commitment
(developed 1976-1978)

Basis for most fancier protocols
Widely used in practice

Use a transaction coordinator
» Usually client — not always!

Two Phase Commit (2PC)

1. Transaction coordinator sends prepare
message to each participating node

2. Each participating node responds to
coordinator with prepared or no

3. If coordinator receives all prepared.
» Broadcast commit

4. If coordinator receives any no:
» Broadcast abort

Informal Example

Matei

Confirmed

Pizza tonight?
Sure

<
<

Alice Bob PizzaSpot

CS 245

Case 1: Commit

Coordinator

|

Participant
Request-to-Prepare >
< Prepared
Commit >
Done

UW CSE545

Case 2: Abort

Coordinator

|

Participant
Request-to-Prepare >
< No
Abort >
Done

UW CSE545

2PC + Validation

Participants perform validation upon receipt
of prepare message

Validation essentially blocks between prepare
and commit message

2PC + 2PL

Traditionally: run 2PC at commit time

» 1.e., perform locking as usual, then run 2PC
to have all participants agree that the
transaction will commit

Under strict 2PL, run 2PC before unlocking
the write locks

2PC + Logging

Log records must be flushed to disk on each
participant before it replies to prepare

» The participant should log how it wants to
respond + data needed if it wants to commit

2PC + Logging Example

| Participant 1
read, write, etc
<T1, Obj1, ...> «— log records
. <T1, Obj2, ...>
Coordinator
Participant 2
<T1, Obj3, ...>

<T1, Obj4, ...>

2PC + Logging Example

Participant 1

<T1, Obj1, ...> «— log records
<T1, Obj2, ...>
<T1, ready>

Coordinator

<T1, commit>

Participant 2

<T1, Obj3, ...>
<T1, Obj4, ...>
<T1, ready>

2PC + Logging Example

Participant 1

<T1, Obj1, ...> «— log records
<T1, Obj2, ...>

<T1, ready>

<T1, commit>

Coordinator

<T1, commit>

Participant 2

<T1, Obj3, ...>
<T1, Obj4, ...>
<T1, ready>

<T1, commit>

Optimizations Galore

Participants can send prepared messages to
each other:

» Can commit without the client
» Requires O(P?) messages

Piggyback transaction’s last command on
prepare message

2PL.: piggyback lock “unlock” commands on
commit/abort message

What Could Go Wrong?

Coordinator

I
/ PREPARE \
Participant Participant Participant

What Could Go Wrong?

Coordinator

]

PREPARED PREPARED

|

What if we don’t
hear back?

Participant

Participant

Participant

CS 245

Case 1: Participant
Unavailable

We don’t hear back from a participant

Coordinator can still decide to abort
» Coordinator makes the final call!

Participant comes back online?
» WIll receive the abort message

What Could Go Wrong?

Coordinator

I
/ PREPARE \
Participant Participant Participant

What Could Go Wrong?

Coordinator does not reply!

PR

PREPARED PREPARED PREPARED

|

s

Participant

Participant

Participant

CS 245

Case 2: Coordinator
Unavailable

Participants cannot make progress

But: can agree to elect a new coordinator,
never listen to the old one (using consensus)

» Old coordinator comes back”? Overruled by
participants, who reject its messages

What Could Go Wrong?

Coordinator

I
/ PREPARE \
Participant Participant Participant

What Could Go Wrong?

Coordinator does not reply!

]

PREPARED PREPARED

|

No contact with
third
participant!

Participant

Participant

Participant

CS 245

24

Case 3: Coordinator and
Participant Unavailable

Worst-case scenario:
» Unavalilable/unreachable participant voted to
prepare
» Coordinator hears back all prepare,
broadcasts commit

» Unavailable/unreachable participant commits

Rest of participants must wait!!!

Other Applications of 2PC

The “participants” can be any entities with
distinct failure modes; for example:

» Add a new user to database and queue a
request to validate their emall

» Book a flight from SFO -> JFK on United and
a flight from JFK -> LON on British Airways

» Check whether Bob is in town, cancel my
hotel room, and ask Bob to stay at his place

Coordination is Bad News

Every atomic commitment protocol is blocking
(i.e., may stall) in the presence of:

» Asynchronous network behavior (e.g.,

unbounded delays)
« Cannot distinguish between delay and failure

» Failing nodes
* If nodes never failed, could just wait

Cool: actual theorem!

Outline

Replication strategies
Partitioning strategies
AC & 2PC

CAP

Avoiding coordination

Parallel processing

CS 245

28

CONTACT US &P INKTOMI WORLDWIDE <& TECH SUPPORT

I mktomi®

PRODUCTS SOLUTIONS SERVICES CUSTOMERS PARTNERS COMPANY NEWS & EVENTS

= Home > Solutions > Customer Self-Service

(@) SEARCH THiS SITE
. INKTOMI SOLUTIONS FOR SELF-SERVICE

powsres hy

Inktoml®
ENTERPRISE PORTALS The Problem
GUSTOMER SELF SERVIGE

Customer satisfaction is directly related to h
answer questions,

CALL CENTERS

SYSTEMS MAIN

Inktomi Files for $26 Millio
AOL Software Deal

Dow Jones Newswires
Updated April 16,1998 2:06 p.m. ET

WASHINGTON -- The software concern Inktomi Corp. said Thursd
it plans to sell up to 2.2 million shares in an initial public offering o
stock tleat*éould raise between $26.4 million and $30.8 million. E riC B rewer

Asynchronous Network Model

Messages can be arbitrarily delayed

Can't distinguish between delayed messages
and failed nodes in a finite amount of time

CAP Theorem

In an asynchronous network, a distributed
database can either:

» guarantee a response from any replica in a
finite amount of time (“availability”) OR

» guarantee arbitrary “consistency”
criteria/constraints about data

but not both

CAP Theorem

Choose either:
» Consistency and “Partition Tolerance”

» Availability and “Partition Tolerance”

Example consistency criteria:
» Exactly one key can have value "Matel”

“CAP” is a reminder:
» No free lunch for distributed systems

Brewer’s Conjecture and the Feasibility of Consistent, Available,
Partition-Tolerant Web Services

Seth Gilbert and Nancy Lynch
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
sethg@mit.edu,lynch@theory.lcs.mit.edu

Abstract

When designing distributed web services, there are three properties that are commonly
desired: consistency, availability, and partition tolerance. It is impossible to achieve all
three. In this note, we prove this conjecture in the asynchronous network model, and
then discuss solutions to this dilemma in the partially synchronous model.

1 Introduction

At PODC 2000, Brewer!, in an invited talk [2], made the following conjecture: it is impossible for
a web service to provide the following three guarantees:

e Consistency
e Availability
e Partition-tolerance

All three of these properties are desirable — and expected — from real-world web services. In
this note, we will first discuss what Brewer meant by the conjecture; next we will formalize these
concepts and prove the conjecture; finally, we will describe and attempt to formalize some real-world
solutions to this practical difficulty.

'Eric Brewer is a professor at the University of California, Berkeley, and the co-founder and Chief Scientist of
Inktomi.

Why CAP is Important

Pithy reminder: “consistency” (serializability,
various integrity constraints) is expensive!
» Costs us the ability to provide “always on”
operation (availability)
» Requires expensive coordination
(synchronous communication) even when we
don’t have failures

Let’s Talk About Coordination

If we're “AP”, then we don’t have to talk even
when we can!

If we're “CP”, then we have to talk all the time

How fast can we send messages”?

Let’s Talk About Coordination

If we're “AP”, then we don’t have to talk even
when we can!

If we're “CP”, then we have to talk all the time

How fast can we send messages”?
» Planet Earth: 144ms RTT

* (77ms if we drill through center of earth)
» Einstein!

Multi-Datacenter Transactions

Message delays often much worse than
speed of light (due to routing)

44ms apart? maximum 22 conflicting

transactions per second
» Of course, no conflicts, no problem!

» Can scale out

Pain point for many systems

Do We Have to Coordinate?

Is it possible achieve some forms of
“correctness” without coordination?

Do We Have to Coordinate?

Example: no user in DB has address=NULL

» If no replica assigns address=NULL on their
own, then NULL will never appear in the DB!

Whole topic of research!

» Key finding: most applications have a few
points where they need coordination, but
many operations do not

S0 Why Bother with
Serializability?

For arbitrary integrity constraints, non-
serializable execution can break constraints

Serializability: just look at reads, writes

To get “coordination-free execution”:
» Must look at application semantics

» Can be hard to get right!
» Strategy: start coordinated, then relax

Punchlines:

Serializability has a provable cost to latency,
availability, scalability (if there are conflicts)

We can avoid this penalty if we are willing to
look at our application and our application
does not require coordination

» Major topic of ongoing research

Outline

Replication strategies
Partitioning strategies
AC & 2PC

CAP

Avoiding coordination

Parallel query execution

CS 245

42

Avoiding Coordination

Several key techniques; e.g. BASE ideas

» Partition data so that most transactions are
local to one partition

» Tolerate out-of-date data (eventual
consistency):
« Caches
* Weaker isolation levels
» Helpful ideas: idempotence, commutativity

Example from BASE Paper

Sample Schema
e Constraint: each
id xid user’'s amt_sold and
name seller id amt_bought is sum of
:ibldght bmytd their transactions

ACID Approach: to add a transaction, use 2PC to
update transactions table + records for buyer, seller

One BASE approach: to add a transaction, write to
transactions table + a persistent queue of updates to
be applied later

Example from BASE Paper

Sample Schema

user
id
name

amt_sold

amt_bought

transaction
xid
seller_id
buyer_id

amount

Constraint: each
user’'s amt_sold and
amt_bought is sum of
their transactions

ACID Approach: to add a transaction, use 2PC to
update transactions table + records for buyer, seller

Another BASE approach: write new transactions to
the transactions table and use a periodic batch job to
fill in the users table

Helpful Ideas

When we delay applying updates to an item,
must ensure we only apply each update once
» Issue if we crash while applying!

» ldempotent operations: same result if you
apply them twice

When different nodes want to update muiltiple
items, want result independent of msg order

» Commutative operations: A®B = B®@A

Example Weak Consistency
Model: Causal Consistency

Very informally: transactions see causally
ordered operations in their causal order
» Causal order of ops: O, < O, if done in that

order by one transaction, or if write-read
dependency across two transactions

Causal Consistency Example

Matei’s Replica
Matei: pizza tonight?
Bob: sorry, studying :(

Shared Object:
group chat log for |-

{Matei, Alice, BOb} Alice: sure!

Alice’s Replica Bob’s Replica
Matei: pizza tonight? Matei: pizza tonight?
Alice: sure!

Bob: sorry, studying :(
Bob: sorry, studying :(Alice: sure!

BASE Applications

What example apps (operations, constraints)
are suitable for BASE?

What example apps are unsuitable for BASE?

Outline

Replication strategies
Partitioning strategies
AC & 2PC

CAP

Avoiding coordination

Parallel query execution

CS 245

50

Why Parallel Execution?

So far, distribution has been a chore, but
there is 1 big potential benefit: performance!

Read-only workloads (analytics) don’t require
much coordination, so great to parallelize

Challenges with Parallelism

Algorithms: how can we divide a particular
computation into pieces (efficiently)?

» Must track both CPU & communication costs

Imbalance: parallelizing doesn’t help if 1
node is assigned 90% of the work

Failures and stragglers: crashed or slow
nodes can make things break

Whole course on this: CS 149

Amdahl’s Law

If p is the fraction of the program that can be
made parallel, running time with N nodes is

T(n)=1-p+ p/N

Result: max possible speedupis 1/ (1 - p)

Example: 80% parallelizable = 5x speedup

Example System Designs

Traditional “massively parallel” DBMS
» Tables partitioned evenly across nodes
» Each physical operator also partitioned
» Pipelining across these operators

MapReduce
» Focus on unreliable, commodity nodes

» Divide work into idempotent tasks, and use
dynamic algorithms for load balancing, fault
recovery and straggler recovery

Example: Distributed Joins

Say we want to compute A <1 B, where A and
B are both partitioned across N nodes:

B

Node 1 Node 2 Node N

CS 245 55

Example: Distributed Joins

Say we want to compute A <1 B, where A and
B are both partitioned across N nodes

Algorithm 1: shuffle hash join

» Each node hashes records of A, Bto N
partitions by key, sends partition i to node |

» Each node then joins the records it received

Communication cost: (N-1)/N (|A| + |B])

Example: Distributed Joins

Say we want to compute A <1 B, where A and
B are both partitioned across N nodes

Algorithm 2: broadcast join on B

» Each node broadcasts its partition of B to all
other nodes
» Each node then joins B against its A partition

Communication cost: (N-1) |B|

Takeaway

Broadcast join is much faster if |B| < |A|

How to decide when to do which?

Takeaway

Broadcast join is much faster if |B| < |A|

How to decide when to do which?
» Data statistics! (especially tricky if B derived)

Which algorithm is more resistant to load
imbalance from data skew?

Takeaway

Broadcast join is much faster if |B| < |A|

How to decide when to do which?
» Data statistics! (especially tricky if B derived)

Which algorithm is more resistant to load
imbalance from data skew?

» Broadcast: hash partitions may be uneven!

What if A, B were already hash-partitioned?

Planning Parallel Queries

Similar to optimization for 1 machine, but
most optimizers also track data partitioning

» Many physical operators, such as shuffle join,
naturally produce a partitioned dataset

» Some tables already partitioned or replicated

Example: Spark and Spark SQL know when
an intermediate result is hash partitioned

» And APls let users set partitioning mode

Handling Imbalance

Choose algorithms, hardware, etc that is
unlikely to cause load imbalance

OR

Load balance dynamically at runtime

» Most common: “over-partitioning” (have
#tasks > #nodes and assign as they finish)

» Could also try to split a running task

Handling Faults & Stragglers

If uncommon, just ignore / call the operator /
restart query

Problem: probability of something bad grows
fast with number of nodes

» E.g. if one node has 0.1% probability of
straggling, then with 1000 nodes,

P(none straggles) = (1 - 0.001)7000 = 0.37

Fault Recovery Mechanisms

Simple recovery: if a node fails, redo its work
since start of query (or since a checkpoint)
» Used in massively parallel DBMSes, HPC

Analysis: suppose failure rate is f failures / sec
/ node; then a job that runs for T-N seconds on
N nodes and checkpoints every C sec has

E(runtime) = (T/C) E(time to run 1 checkpoint)
=(T/C) (C-(1 - fN)C + Cc:hec:kpoint)

Grows fast with N, even if we vary C!

Fault Recovery Mechanisms

Parallel recovery: over-partition tasks; when
a node fails, redistribute its tasks to the others

» Used in MapReduce, Spark, etc

Analysis: suppose failure rate is f failures / sec
/ node; then a job that runs for T-N sec on N
nodes with task of size « 1/f has

E(runtime) =T / (1-f)

This doesn’t grow with N!

65

Summary

Parallel execution can use many techniques
we saw before, but must consider 3 issues:

» Communication cost: often > compute
(remember our lecture on storage)

» Load balance: need to minimize the time
when last op finishes, not sum of task times

» Fault recovery if at large enough scale

