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Atomic Commitment

Informally: either all participants commit a 
transaction, or none do

“participants” = partitions involved in a given 
transaction
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So, What’s Hard?

All the problems as consensus…

…plus, if any node votes to abort, all must 
decide to abort
» In consensus, simply need agreement on 

“some” value
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Two-Phase Commit

Canonical protocol for atomic commitment 
(developed 1976-1978)

Basis for most fancier protocols

Widely used in practice

Use a transaction coordinator
» Usually client – not always!
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Two Phase Commit (2PC)
1. Transaction coordinator sends prepare

message to each participating node

2. Each participating node responds to 
coordinator with prepared or no

3. If coordinator receives all prepared:
» Broadcast commit

4. If coordinator receives any no:
» Broadcast abort
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Informal Example
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Case 1: Commit
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Case 2: Abort



2PC + Validation

Participants perform validation upon receipt 
of prepare message

Validation essentially blocks between prepare
and commit message
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2PC + 2PL

Traditionally: run 2PC at commit time
» i.e., perform locking as usual, then run 2PC 

to have all participants agree that the 
transaction will commit

Under strict 2PL, run 2PC before unlocking 
the write locks
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2PC + Logging

Log records must be flushed to disk on each 
participant before it replies to prepare
» The participant should log how it wants to 

respond + data needed if it wants to commit
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2PC + Logging Example
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<T1, Obj4, …>

← log records



2PC + Logging Example
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2PC + Logging Example
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Optimizations Galore

Participants can send prepared messages to 
each other:
» Can commit without the client
» Requires O(P2) messages

Piggyback transaction’s last command on 
prepare message

2PL: piggyback lock “unlock” commands on 
commit/abort message
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What Could Go Wrong?

Coordinator

Participant Participant Participant

PREPARE
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What Could Go Wrong?

Coordinator

Participant Participant Participant

PREPARED PREPARED What if we don’t
hear back?

CS 245 18



Case 1: Participant 
Unavailable
We don’t hear back from a participant

Coordinator can still decide to abort
» Coordinator makes the final call!

Participant comes back online?
» Will receive the abort message
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What Could Go Wrong?

Participant Participant Participant

PREPARE

CS 245 20

Coordinator



What Could Go Wrong?

Participant Participant Participant

PREPARED PREPARED PREPARED

Coordinator does not reply!
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Case 2: Coordinator 
Unavailable
Participants cannot make progress

But: can agree to elect a new coordinator, 
never listen to the old one (using consensus)
» Old coordinator comes back? Overruled by 

participants, who reject its messages
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What Could Go Wrong?

Coordinator

Participant Participant Participant

PREPARE
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What Could Go Wrong?

Participant Participant Participant

PREPARED PREPARED

Coordinator does not reply!

No contact with
third
participant!
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Case 3: Coordinator and 
Participant Unavailable
Worst-case scenario:
» Unavailable/unreachable participant voted to 

prepare
» Coordinator hears back all prepare, 

broadcasts commit
» Unavailable/unreachable participant commits

Rest of participants must wait!!!
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Other Applications of 2PC

The “participants” can be any entities with 
distinct failure modes; for example:
» Add a new user to database and queue a 

request to validate their email
» Book a flight from SFO -> JFK on United and 

a flight from JFK -> LON on British Airways
» Check whether Bob is in town, cancel my 

hotel room, and ask Bob to stay at his place
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Coordination is Bad News

Every atomic commitment protocol is blocking
(i.e., may stall) in the presence of:
» Asynchronous network behavior (e.g., 

unbounded delays)
• Cannot distinguish between delay and failure

» Failing nodes
• If nodes never failed, could just wait

Cool: actual theorem!
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Asynchronous Network Model

Messages can be arbitrarily delayed

Can’t distinguish between delayed messages 
and failed nodes in a finite amount of time
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CAP Theorem

In an asynchronous network, a distributed 
database can either:
» guarantee a response from any replica in a 

finite amount of time (“availability”) OR
» guarantee arbitrary “consistency” 

criteria/constraints about data

but not both
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CAP Theorem

Choose either:
» Consistency and “Partition Tolerance”
» Availability and “Partition Tolerance”

Example consistency criteria:
» Exactly one key can have value “Matei”

“CAP” is a reminder:
» No free lunch for distributed systems
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Why CAP is Important

Pithy reminder: “consistency” (serializability, 
various integrity constraints) is expensive!
» Costs us the ability to provide “always on” 

operation (availability)
» Requires expensive coordination 

(synchronous communication) even when we 
don’t have failures
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Let’s Talk About Coordination

If we’re “AP”, then we don’t have to talk even 
when we can!

If we’re “CP”, then we have to talk all the time

How fast can we send messages?
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Let’s Talk About Coordination

If we’re “AP”, then we don’t have to talk even 
when we can!

If we’re “CP”, then we have to talk all the time

How fast can we send messages?
» Planet Earth: 144ms RTT

• (77ms if we drill through center of earth)
» Einstein!
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Multi-Datacenter Transactions

Message delays often much worse than 
speed of light (due to routing)

44ms apart? maximum 22 conflicting 
transactions per second
» Of course, no conflicts, no problem!
» Can scale out

Pain point for many systems
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Do We Have to Coordinate?

Is it possible achieve some forms of 
“correctness” without coordination?
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Do We Have to Coordinate?

Example: no user in DB has address=NULL
» If no replica assigns address=NULL on their 

own, then NULL will never appear in the DB!

Whole topic of research!
» Key finding: most applications have a few 

points where they need coordination, but 
many operations do not
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So Why Bother with 
Serializability?
For arbitrary integrity constraints, non-
serializable execution can break constraints

Serializability: just look at reads, writes

To get “coordination-free execution”:
» Must look at application semantics
» Can be hard to get right!
» Strategy: start coordinated, then relax

CS 245 40



Punchlines:

Serializability has a provable cost to latency, 
availability, scalability (if there are conflicts)

We can avoid this penalty if we are willing to 
look at our application and our application 
does not require coordination
» Major topic of ongoing research
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Avoiding Coordination

Several key techniques; e.g. BASE ideas
» Partition data so that most transactions are 

local to one partition
» Tolerate out-of-date data (eventual 

consistency):
• Caches
• Weaker isolation levels
• Helpful ideas: idempotence, commutativity
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Example from BASE Paper
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Constraint: each 
user’s amt_sold and
amt_bought is sum of 
their transactions

ACID Approach: to add a transaction, use 2PC to 
update transactions table + records for buyer, seller

One BASE approach: to add a transaction, write to 
transactions table + a persistent queue of updates to 
be applied later



Example from BASE Paper
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Constraint: each 
user’s amt_sold and
amt_bought is sum of 
their transactions

ACID Approach: to add a transaction, use 2PC to 
update transactions table + records for buyer, seller

Another BASE approach: write new transactions to 
the transactions table and use a periodic batch job to 
fill in the users table



Helpful Ideas

When we delay applying updates to an item, 
must ensure we only apply each update once
» Issue if we crash while applying!
» Idempotent operations: same result if you 

apply them twice

When different nodes want to update multiple 
items, want result independent of msg order
» Commutative operations: A⍟B = B⍟A

CS 245 46



Example Weak Consistency 
Model: Causal Consistency
Very informally: transactions see causally 
ordered operations in their causal order
» Causal order of ops: O1 ≺ O2 if done in that 

order by one transaction, or if write-read 
dependency across two transactions
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Causal Consistency Example
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Shared Object:
group chat log for
{Matei, Alice, Bob}

Matei’s Replica

Alice’s Replica Bob’s Replica
Matei: pizza tonight? Matei: pizza tonight?
Alice: sure! Bob: sorry, studying :(
Bob: sorry, studying :( Alice: sure!

Matei: pizza tonight?
Bob: sorry, studying :(
Alice: sure!



BASE Applications

What example apps (operations, constraints) 
are suitable for BASE?

What example apps are unsuitable for BASE?
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Why Parallel Execution?

So far, distribution has been a chore, but 
there is 1 big potential benefit: performance!

Read-only workloads (analytics) don’t require 
much coordination, so great to parallelize
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Challenges with Parallelism

Algorithms: how can we divide a particular 
computation into pieces (efficiently)?
» Must track both CPU & communication costs

Imbalance: parallelizing doesn’t help if 1 
node is assigned 90% of the work

Failures and stragglers: crashed or slow 
nodes can make things break
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Amdahl’s Law

If p is the fraction of the program that can be 
made parallel, running time with N nodes is

T(n) = 1 - p + p/N

Result: max possible speedup is 1 / (1 - p)

Example: 80% parallelizable ⇒ 5x speedup
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Example System Designs

Traditional “massively parallel” DBMS
» Tables partitioned evenly across nodes
» Each physical operator also partitioned
» Pipelining across these operators

MapReduce
» Focus on unreliable, commodity nodes
» Divide work into idempotent tasks, and use 

dynamic algorithms for load balancing, fault 
recovery and straggler recovery
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Example: Distributed Joins

Say we want to compute A ⨝ B, where A and 
B are both partitioned across N nodes:
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A1

B1

Node 1

A1

B2

Node 2
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…



Example: Distributed Joins

Say we want to compute A ⨝ B, where A and 
B are both partitioned across N nodes

Algorithm 1: shuffle hash join
» Each node hashes records of A, B to N 

partitions by key, sends partition i to node I
» Each node then joins the records it received

Communication cost: (N-1)/N (|A| + |B|)
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Example: Distributed Joins

Say we want to compute A ⨝ B, where A and 
B are both partitioned across N nodes

Algorithm 2: broadcast join on B
» Each node broadcasts its partition of B to all 

other nodes
» Each node then joins B against its A partition

Communication cost: (N-1) |B|
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Takeaway

Broadcast join is much faster if |B| ≪ |A|

How to decide when to do which?
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Takeaway

Broadcast join is much faster if |B| ≪ |A|

How to decide when to do which?
» Data statistics! (especially tricky if B derived)

Which algorithm is more resistant to load 
imbalance from data skew?
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Takeaway

Broadcast join is much faster if |B| ≪ |A|

How to decide when to do which?
» Data statistics! (especially tricky if B derived)

Which algorithm is more resistant to load 
imbalance from data skew?
» Broadcast: hash partitions may be uneven!

What if A, B were already hash-partitioned?
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Planning Parallel Queries

Similar to optimization for 1 machine, but 
most optimizers also track data partitioning
» Many physical operators, such as shuffle join, 

naturally produce a partitioned dataset
» Some tables already partitioned or replicated

Example: Spark and Spark SQL know when 
an intermediate result is hash partitioned
» And APIs let users set partitioning mode
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Handling Imbalance

Choose algorithms, hardware, etc that is 
unlikely to cause load imbalance

OR

Load balance dynamically at runtime
» Most common: “over-partitioning” (have 

#tasks ≫ #nodes and assign as they finish)
» Could also try to split a running task
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Handling Faults & Stragglers

If uncommon, just ignore / call the operator / 
restart query

Problem: probability of something bad grows 
fast with number of nodes
» E.g. if one node has 0.1% probability of

straggling, then with 1000 nodes,
P(none straggles) = (1 - 0.001)1000 ≈ 0.37
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Fault Recovery Mechanisms

Simple recovery: if a node fails, redo its work 
since start of query (or since a checkpoint)
» Used in massively parallel DBMSes, HPC

Analysis: suppose failure rate is f failures / sec 
/ node; then a job that runs for T·N seconds on 
N nodes and checkpoints every C sec has

E(runtime) = (T/C) E(time to run 1 checkpoint)
= (T/C) (C·(1 - fN)C + ccheckpoint)
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Fault Recovery Mechanisms

Parallel recovery: over-partition tasks; when 
a node fails, redistribute its tasks to the others
» Used in MapReduce, Spark, etc

Analysis: suppose failure rate is f failures / sec 
/ node; then a job that runs for T·N sec on N 
nodes with task of size ≪ 1/f has

E(runtime) = T / (1-f)
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Summary

Parallel execution can use many techniques 
we saw before, but must consider 3 issues:
» Communication cost: often ≫ compute 

(remember our lecture on storage)
» Load balance: need to minimize the time 

when last op finishes, not sum of task times
» Fault recovery if at large enough scale

CS 245 66


