
Distributed Databases

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Outline

Replication strategies

Partitioning strategies

AC & 2PC

CAP

Avoiding coordination

Parallel query execution
CS 245 2

Atomic Commitment

Informally: either all participants commit a
transaction, or none do

“participants” = partitions involved in a given
transaction

CS 245 3

So, What’s Hard?

All the problems as consensus…

…plus, if any node votes to abort, all must
decide to abort
» In consensus, simply need agreement on

“some” value

CS 245 4

Two-Phase Commit

Canonical protocol for atomic commitment
(developed 1976-1978)

Basis for most fancier protocols

Widely used in practice

Use a transaction coordinator
» Usually client – not always!

CS 245 5

Two Phase Commit (2PC)
1. Transaction coordinator sends prepare

message to each participating node

2. Each participating node responds to
coordinator with prepared or no

3. If coordinator receives all prepared:
» Broadcast commit

4. If coordinator receives any no:
» Broadcast abort

CS 245 6

Informal Example

CS 245 7

Matei

Alice Bob

Pizz
a t

on
igh

t?

Sure

PizzaSpot

Con
firm

ed
Pi

zz
a

to
ni

gh
t?

Su
re

C
on

fir
m

ed

Got a table for 3 tonight?

Yes we do

I’ll book it

Case 1: Commit

CS 245 8UW CSE545

UW CSE545

Case 2: Abort

2PC + Validation

Participants perform validation upon receipt
of prepare message

Validation essentially blocks between prepare
and commit message

CS 245 10

2PC + 2PL

Traditionally: run 2PC at commit time
» i.e., perform locking as usual, then run 2PC

to have all participants agree that the
transaction will commit

Under strict 2PL, run 2PC before unlocking
the write locks

CS 245 11

2PC + Logging

Log records must be flushed to disk on each
participant before it replies to prepare
» The participant should log how it wants to

respond + data needed if it wants to commit

CS 245 12

2PC + Logging Example

CS 245 13

Coordinator

Participant 1

Participant 2

<T1, Obj1, …>

read, write, etc

<T1, Obj3, …>

<T1, Obj2, …>

<T1, Obj4, …>

← log records

2PC + Logging Example

CS 245 14

Coordinator

Participant 1

Participant 2

<T1, Obj1, …>
pre

pa
re

<T1, Obj3, …>

<T1, Obj2, …>

<T1, Obj4, …>

<T1, ready>

<T1, ready>

prepareready

rea
dy ← log records

<T1, commit>

2PC + Logging Example

CS 245 15

Coordinator

Participant 1

Participant 2

<T1, Obj1, …>
co

mmit

<T1, Obj3, …>

<T1, Obj2, …>

<T1, Obj4, …>

<T1, ready>

<T1, ready>

commitdone

do
ne ← log records

<T1, commit>

<T1, commit>

<T1, commit>

Optimizations Galore

Participants can send prepared messages to
each other:
» Can commit without the client
» Requires O(P2) messages

Piggyback transaction’s last command on
prepare message

2PL: piggyback lock “unlock” commands on
commit/abort message

CS 245 16

What Could Go Wrong?

Coordinator

Participant Participant Participant

PREPARE

CS 245 17

What Could Go Wrong?

Coordinator

Participant Participant Participant

PREPARED PREPARED What if we don’t
hear back?

CS 245 18

Case 1: Participant
Unavailable
We don’t hear back from a participant

Coordinator can still decide to abort
» Coordinator makes the final call!

Participant comes back online?
» Will receive the abort message

CS 245 19

What Could Go Wrong?

Participant Participant Participant

PREPARE

CS 245 20

Coordinator

What Could Go Wrong?

Participant Participant Participant

PREPARED PREPARED PREPARED

Coordinator does not reply!

CS 245 21

Case 2: Coordinator
Unavailable
Participants cannot make progress

But: can agree to elect a new coordinator,
never listen to the old one (using consensus)
» Old coordinator comes back? Overruled by

participants, who reject its messages

CS 245 22

What Could Go Wrong?

Coordinator

Participant Participant Participant

PREPARE

CS 245 23

What Could Go Wrong?

Participant Participant Participant

PREPARED PREPARED

Coordinator does not reply!

No contact with
third
participant!

CS 245 24

Case 3: Coordinator and
Participant Unavailable
Worst-case scenario:
» Unavailable/unreachable participant voted to

prepare
» Coordinator hears back all prepare,

broadcasts commit
» Unavailable/unreachable participant commits

Rest of participants must wait!!!

CS 245 25

Other Applications of 2PC

The “participants” can be any entities with
distinct failure modes; for example:
» Add a new user to database and queue a

request to validate their email
» Book a flight from SFO -> JFK on United and

a flight from JFK -> LON on British Airways
» Check whether Bob is in town, cancel my

hotel room, and ask Bob to stay at his place

CS 245 26

Coordination is Bad News

Every atomic commitment protocol is blocking
(i.e., may stall) in the presence of:
» Asynchronous network behavior (e.g.,

unbounded delays)
• Cannot distinguish between delay and failure

» Failing nodes
• If nodes never failed, could just wait

Cool: actual theorem!

CS 245 27

Outline

Replication strategies

Partitioning strategies

AC & 2PC

CAP

Avoiding coordination

Parallel processing
CS 245 28

CS 245 29Eric Brewer

Asynchronous Network Model

Messages can be arbitrarily delayed

Can’t distinguish between delayed messages
and failed nodes in a finite amount of time

CS 245 30

CAP Theorem

In an asynchronous network, a distributed
database can either:
» guarantee a response from any replica in a

finite amount of time (“availability”) OR
» guarantee arbitrary “consistency”

criteria/constraints about data

but not both

CS 245 31

CAP Theorem

Choose either:
» Consistency and “Partition Tolerance”
» Availability and “Partition Tolerance”

Example consistency criteria:
» Exactly one key can have value “Matei”

“CAP” is a reminder:
» No free lunch for distributed systems

CS 245 32

Why CAP is Important

Pithy reminder: “consistency” (serializability,
various integrity constraints) is expensive!
» Costs us the ability to provide “always on”

operation (availability)
» Requires expensive coordination

(synchronous communication) even when we
don’t have failures

CS 245 34

Let’s Talk About Coordination

If we’re “AP”, then we don’t have to talk even
when we can!

If we’re “CP”, then we have to talk all the time

How fast can we send messages?

CS 245 35

Let’s Talk About Coordination

If we’re “AP”, then we don’t have to talk even
when we can!

If we’re “CP”, then we have to talk all the time

How fast can we send messages?
» Planet Earth: 144ms RTT

• (77ms if we drill through center of earth)
» Einstein!

CS 245 36

Multi-Datacenter Transactions

Message delays often much worse than
speed of light (due to routing)

44ms apart? maximum 22 conflicting
transactions per second
» Of course, no conflicts, no problem!
» Can scale out

Pain point for many systems

CS 245 37

Do We Have to Coordinate?

Is it possible achieve some forms of
“correctness” without coordination?

CS 245 38

Do We Have to Coordinate?

Example: no user in DB has address=NULL
» If no replica assigns address=NULL on their

own, then NULL will never appear in the DB!

Whole topic of research!
» Key finding: most applications have a few

points where they need coordination, but
many operations do not

CS 245 39

So Why Bother with
Serializability?
For arbitrary integrity constraints, non-
serializable execution can break constraints

Serializability: just look at reads, writes

To get “coordination-free execution”:
» Must look at application semantics
» Can be hard to get right!
» Strategy: start coordinated, then relax

CS 245 40

Punchlines:

Serializability has a provable cost to latency,
availability, scalability (if there are conflicts)

We can avoid this penalty if we are willing to
look at our application and our application
does not require coordination
» Major topic of ongoing research

CS 245 41

Outline

Replication strategies

Partitioning strategies

AC & 2PC

CAP

Avoiding coordination

Parallel query execution
CS 245 42

Avoiding Coordination

Several key techniques; e.g. BASE ideas
» Partition data so that most transactions are

local to one partition
» Tolerate out-of-date data (eventual

consistency):
• Caches
• Weaker isolation levels
• Helpful ideas: idempotence, commutativity

CS 245 43

Example from BASE Paper

CS 245 44

Constraint: each
user’s amt_sold and
amt_bought is sum of
their transactions

ACID Approach: to add a transaction, use 2PC to
update transactions table + records for buyer, seller

One BASE approach: to add a transaction, write to
transactions table + a persistent queue of updates to
be applied later

Example from BASE Paper

CS 245 45

Constraint: each
user’s amt_sold and
amt_bought is sum of
their transactions

ACID Approach: to add a transaction, use 2PC to
update transactions table + records for buyer, seller

Another BASE approach: write new transactions to
the transactions table and use a periodic batch job to
fill in the users table

Helpful Ideas

When we delay applying updates to an item,
must ensure we only apply each update once
» Issue if we crash while applying!
» Idempotent operations: same result if you

apply them twice

When different nodes want to update multiple
items, want result independent of msg order
» Commutative operations: A⍟B = B⍟A

CS 245 46

Example Weak Consistency
Model: Causal Consistency
Very informally: transactions see causally
ordered operations in their causal order
» Causal order of ops: O1 ≺ O2 if done in that

order by one transaction, or if write-read
dependency across two transactions

CS 245 47

Causal Consistency Example

CS 245 48

Shared Object:
group chat log for
{Matei, Alice, Bob}

Matei’s Replica

Alice’s Replica Bob’s Replica
Matei: pizza tonight? Matei: pizza tonight?
Alice: sure! Bob: sorry, studying :(
Bob: sorry, studying :(Alice: sure!

Matei: pizza tonight?
Bob: sorry, studying :(
Alice: sure!

BASE Applications

What example apps (operations, constraints)
are suitable for BASE?

What example apps are unsuitable for BASE?

CS 245 49

Outline

Replication strategies

Partitioning strategies

AC & 2PC

CAP

Avoiding coordination

Parallel query execution
CS 245 50

Why Parallel Execution?

So far, distribution has been a chore, but
there is 1 big potential benefit: performance!

Read-only workloads (analytics) don’t require
much coordination, so great to parallelize

CS 245 51

Challenges with Parallelism

Algorithms: how can we divide a particular
computation into pieces (efficiently)?
» Must track both CPU & communication costs

Imbalance: parallelizing doesn’t help if 1
node is assigned 90% of the work

Failures and stragglers: crashed or slow
nodes can make things break

CS 245 52

Whole course on this: CS 149

Amdahl’s Law

If p is the fraction of the program that can be
made parallel, running time with N nodes is

T(n) = 1 - p + p/N

Result: max possible speedup is 1 / (1 - p)

Example: 80% parallelizable ⇒ 5x speedup

CS 245 53

Example System Designs

Traditional “massively parallel” DBMS
» Tables partitioned evenly across nodes
» Each physical operator also partitioned
» Pipelining across these operators

MapReduce
» Focus on unreliable, commodity nodes
» Divide work into idempotent tasks, and use

dynamic algorithms for load balancing, fault
recovery and straggler recovery

CS 245 54

Example: Distributed Joins

Say we want to compute A ⨝ B, where A and
B are both partitioned across N nodes:

CS 245 55

A1

B1

Node 1

A1

B2

Node 2

AN

BN

Node N

…

Example: Distributed Joins

Say we want to compute A ⨝ B, where A and
B are both partitioned across N nodes

Algorithm 1: shuffle hash join
» Each node hashes records of A, B to N

partitions by key, sends partition i to node I
» Each node then joins the records it received

Communication cost: (N-1)/N (|A| + |B|)

CS 245 56

Example: Distributed Joins

Say we want to compute A ⨝ B, where A and
B are both partitioned across N nodes

Algorithm 2: broadcast join on B
» Each node broadcasts its partition of B to all

other nodes
» Each node then joins B against its A partition

Communication cost: (N-1) |B|

CS 245 57

Takeaway

Broadcast join is much faster if |B| ≪ |A|

How to decide when to do which?

CS 245 58

Takeaway

Broadcast join is much faster if |B| ≪ |A|

How to decide when to do which?
» Data statistics! (especially tricky if B derived)

Which algorithm is more resistant to load
imbalance from data skew?

CS 245 59

Takeaway

Broadcast join is much faster if |B| ≪ |A|

How to decide when to do which?
» Data statistics! (especially tricky if B derived)

Which algorithm is more resistant to load
imbalance from data skew?
» Broadcast: hash partitions may be uneven!

What if A, B were already hash-partitioned?

CS 245 60

Planning Parallel Queries

Similar to optimization for 1 machine, but
most optimizers also track data partitioning
» Many physical operators, such as shuffle join,

naturally produce a partitioned dataset
» Some tables already partitioned or replicated

Example: Spark and Spark SQL know when
an intermediate result is hash partitioned
» And APIs let users set partitioning mode

CS 245 61

Handling Imbalance

Choose algorithms, hardware, etc that is
unlikely to cause load imbalance

OR

Load balance dynamically at runtime
» Most common: “over-partitioning” (have

#tasks ≫ #nodes and assign as they finish)
» Could also try to split a running task

CS 245 62

Handling Faults & Stragglers

If uncommon, just ignore / call the operator /
restart query

Problem: probability of something bad grows
fast with number of nodes
» E.g. if one node has 0.1% probability of

straggling, then with 1000 nodes,
P(none straggles) = (1 - 0.001)1000 ≈ 0.37

CS 245 63

Fault Recovery Mechanisms

Simple recovery: if a node fails, redo its work
since start of query (or since a checkpoint)
» Used in massively parallel DBMSes, HPC

Analysis: suppose failure rate is f failures / sec
/ node; then a job that runs for T·N seconds on
N nodes and checkpoints every C sec has

E(runtime) = (T/C) E(time to run 1 checkpoint)
= (T/C) (C·(1 - fN)C + ccheckpoint)

CS 245 64Grows fast with N, even if we vary C!

Fault Recovery Mechanisms

Parallel recovery: over-partition tasks; when
a node fails, redistribute its tasks to the others
» Used in MapReduce, Spark, etc

Analysis: suppose failure rate is f failures / sec
/ node; then a job that runs for T·N sec on N
nodes with task of size ≪ 1/f has

E(runtime) = T / (1-f)

CS 245 65

This doesn’t grow with N!

Summary

Parallel execution can use many techniques
we saw before, but must consider 3 issues:
» Communication cost: often ≫ compute

(remember our lecture on storage)
» Load balance: need to minimize the time

when last op finishes, not sum of task times
» Fault recovery if at large enough scale

CS 245 66

