
Security and Data
Privacy

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/

Outline

Security requirements

Key concepts and tools

Differential privacy

Other security tools

CS 245 2

Outline

Security requirements

Key concepts and tools

Differential privacy

Other security tools

CS 245 3

Why Security & Privacy?

Data is valuable & can cause harm if released
» Example: medical records, purchase history,

internal company documents, etc

Data releases can’t usually be “undone”

Security policies can be complex
» Each user can only see data from their friends
» Analyst can only query aggregate data
» Users can ask to delete their derived data

CS 245 4

Why Security & Privacy?
It’s the law! new regulations about user data:

US HIPAA: Health Insurance Portability &
Accountability Act (1996)
» Mandatory encryption, access control, training

EU GDPR: General Data Protection
Regulation (2018)
» Users can ask to see & delete their data

PCI: Payment Card Industry standard (2004)
» Required in contracts with MasterCard, etc

CS 245 5

Consequence

Security and privacy must be baked into the
design of data-intensive systems
» Often a key differentiator for products!

CS 245 6

The Good News

Declarative interface to many data-intensive
systems can enable powerful security features
» One of the “big ideas” in our class!

Example: System R’s access control on views

CS 245 7

arbitrary
SQL query

Tables
SQL
View Users

read

write

Outline

Security requirements

Key concepts and tools

Differential privacy

Other security tools

CS 245 8

Some Security Goals

Access Control: only the “right” users can
perform various operations; typically relies on:
» Authentication: a way to verify user identity

(e.g. password)
» Authorization: a way to specify what users

may take what actions (e.g. file permissions)

Auditing: system records an incorruptible
audit trail of who did each action

CS 245 9

Some Security Goals

Confidentiality: data is inaccessible to
external parties (often via cryptography)

Integrity: data can’t be modified by external
parties

Privacy: only a limited amount of information
about “individual” users can be learned

CS 245 10

Clarifying These Goals
Say our goal was access control: only Matei can
set CS 245 student grades on Axess

What scenarios should Axess protect against?
1. Bobby T. (an evil student) logging into Axess as

himself and being able to change grades
2. Bobby sending hand-crafted network packets to

Axess to change his grades
3. Bobby getting a job as a DB admin at Axess
4. Bobby guessing Matei’s password
5. Bobby blackmailing Matei to change his grade
6. Bobby discovering a flaw in AES to do #2

11

Threat Models

To meaningfully reason about security, need a
threat model: what adversaries may do
» Same idea as failure models!

For example, in our Axess scenario, assume:
» Adversaries only interact with Axess through

its public API
» No crypto algorithm or software bugs
» No password theft

CS 245 12

Implementing complex security policies can be
hard even with these assumptions!

Threat Models

No useful threat model can cover everything
» Goal is to cover the most feasible scenarios

for adversaries to increase the cost of attacks

Threat models also let us divide security tasks
across different components
» E.g. auth system handles passwords, 2FA

CS 245 13

Threat Models

CS 245 14Source: XKCD.com

Useful Building Blocks

Encryption: encode data so that only parties
with a key can efficiently decrypt

Cryptographic hash functions: hard to find
items with a given hash (or collisions)

Secure channels (e.g. TLS): confidential,
authenticated communication for 2 parties

CS 245 15

Security in a Typical DBMS

First-class concept of users + access control
» Views as in System R, tables, etc

Secure channels for network communication

Audit logs for analysis

Encrypt data on-disk (perhaps at OS level)

CS 245 16

Emerging Ideas for Security

Privacy metrics and enforcement thereof
(e.g. differential privacy)

Computing on encrypted data (e.g. CryptDB)

Hardware-assisted security (e.g. enclaves)

Multi-party computation (e.g. secret sharing)

CS 245 17

Outline

Security requirements

Key concepts and tools

Differential privacy

Other security tools

CS 245 18

Motivation

Many applications can be built on user data,
but how to make sure that analysts with
access to data don’t see personal secrets?

Example: what word is most likely to be typed
after “Want to grab” in a text message?
» Need peoples’ texts but don’t give to analysts!

Example: what’s the most common diagnosis
for hospital patients aged <40 in Palo Alto?

CS 245 19

Threat Model

CS 245 20

Table with
private data Analysts

Database
server

• Database software is working correctly
• Adversaries only access it through public API
• Adversaries have limited # of user accounts

queries

queries

How to Define Privacy?

This is conceptually very tricky! How to
distinguish between

SELECT TOP(disease) FROM patients WHERE
state=“California”

and

SELECT TOP(disease) FROM patients WHERE
name=“Matei Zaharia”

CS 245 21

How to Define Privacy?

Also want to defend against adversaries who
have some side-information; for instance:

SELECT TOP(disease) FROM patients WHERE
birth_year=“19XX” AND gender=“M” AND
born_in=“Romania” AND ...

Also consider adversaries who do multiple
queries (e.g. subtract 2 results)

CS 245 22

Side information about Matei

Differential Privacy

Privacy definition that tackles these concerns
and others by looking at possible databases
» Idea: results that an adversary saw should be

“nearly as likely” for a database without Matei

Definition: a randomized algorithm M is
ε-differentially private if for all S ⊆ Range(M),

Pr[M(A)∈S] ≤ Pr[M(B)∈S] eε·|A⊕B|

CS 245 23

Number of records that
differ in sets A and B

Equivalent Definition

A randomized algorithm M is ε-differentially
private if for all S⊆Range(M) and all sets A, B
that differ in 1 element,

Pr[M(A)∈S] ≤ Pr[M(B)∈S] eε

CS 245 24

What Does It Mean?

Say an adversary runs some query and
observes a result X

Adversary had some set of results, S, that
lets them infer something about Matei if X∈S

Then:

Pr[X∈S | Matei∈DB] ≤ eε Pr[X∈S | Matei∉DB]

Pr[X∉S | Matei∈DB] ≤ eε Pr[X∉S | Matei∉DB]

CS 245 25

≈ 1+ε

Similar outcomes whether or not Matei in DB

and

What Does It Mean?

Example (assume ε=0.1):

SELECT TOP(diagnosis) FROM patients WHERE age<35
AND city=“Palo Alto”

SELECT TOP(diagnosis) FROM patients WHERE age<35
AND city=“Palo Alto” AND born=“Romania”

Does this mean Matei specifically takes drugs?
» Result would have been nearly as likely (within 10%)

even if Matei were not in the database
» Could be we just got a low-probability result
» Could be most Romanians do drugs (no info on Matei)

CS 245 26

flu

drug overdose

Some Nice Properties of
Differential Privacy
Composition: can reason about the privacy
effect of multiple (even dependent) queries

Let queries Mi each provide εi-differential
privacy; then the sequence of queries {Mi}
provides (Σi εi)-differential privacy

Proof:
Pr[∀i Mi(A)=ri] ≤ e(ε1+…+εn)|A⊕B| Pr[∀i Mi(B)=ri]

CS 245 27

Adversary’s ability to distinguish DBs A & B
grows in a bounded way with each query

Some Nice Properties of
Differential Privacy
Parallel composition: even better bounds if
queries are on disjoint subsets

Let Mi each provide ε-differential privacy and
read disjoint subsets of the data Di; then the set
of queries {Mi} provides ε-differential privacy

Example: query both average patient age in CA
and average patient age in NY

CS 245 28

Some Nice Properties of
Differential Privacy
Easy to compute: can use known results for
various operators, then compose for a query
» Enables systems to automatically compute

privacy bounds given declarative queries!

CS 245 29

Disadvantages of Differential
Privacy

CS 245 30

Disadvantages of Differential
Privacy
Each user can only make a limited number of
queries (more precisely, limited total ε)
» Their ε grows with each query and can’t shrink

How to set ε in practice?
» Hard to tell what various values mean, though

there is a nice Bayesian interpretation
» Apple set ε=6 and researchers said it’s too high

Can’t query using arbitrary code (must know ε)

CS 245 31

Computing Differential
Privacy Bounds
Let’s start with COUNT aggregates:
SELECT COUNT(*) FROM A

The randomized algorithm M(A) that returns
|A| + Laplace(1/ε) is ε-differentially private

CS 245 32
Image source: Wikipedia

Laplace(b) distribution:
p(x) = 1/(2b) e-|x|/b

Mean: 0
Variance: 2b2

Computing Differential
Privacy Bounds
Let’s start with COUNT aggregates:
SELECT COUNT(*) FROM A

The randomized algorithm M(A) that returns
|A| + Laplace(1/ε) is ε-differentially private

CS 245 33

Result of M(A)
for count(A)=107

Value returned by M

Result of M(B)
for count(B)=108

Pr
ob

ab
ilit

y

Computing Differential
Privacy Bounds
What about AVERAGE aggregates:
SELECT AVERAGE(x) FROM A

CS 245 34

Computing Differential
Privacy Bounds
What about AVERAGE aggregates:
SELECT AVERAGE(x) FROM A

How much can one element of A affect result?
» In general case, unboundedly much! No privacy

• SELECT AVG(wealth) WHERE city=“Omaha, NB”

» If x ∈ [0,m] for all x in A, then by at most m
• Adding Laplace(m/ε) noise is ε-differentially private

Paper bounds AVG, SUM for values x ∈ [-1,1]
CS 245 35

Computing Differential
Privacy Bounds
General notion to capture the impact of one
element: sensitivity

Sensitivity of a function f: U→ℝ on sets is

Δf = maxA,B∈U differ in 1 element |f(A) – f(B)|

CS 245 36

Sensitivity Examples

f(A) = |A|

f(A) = sum(A), x∈[0,m] ∀x∈A

f(A) = avg(A), x∈[0,m] ∀x∈A

f(A) = |{x∈A | x is male}|

f(A) = |A⨝B|

f(A) = |A⨝B|, each key has
≤ k matches

CS 245 37

1

m

m

1

unbounded

k

Sensitivity

Multi-dimensional Sensitivity

Can also define sensitivity for functions that
return multiple numerical results:

Sensitivity of a function f: U→ℝd on sets is

Δf = maxA,B∈U differ in 1 element ||f(A) – f(B)||1

Example: f fits a linear model to the data...

CS 245 38

Computing Differential
Privacy Bounds
Another concept, used to reason about set
transformations in PINQ: stability

A function T on sets is c-stable if for any two
input sets A and B,

|T(A) ⊕ T(B)| ≤ c |A ⊕ B|

CS 245 39

Number of records
that differ in A and B

PINQ’s approach: let user do any # of set ops;
compute their stability; then let them do one

aggregate op and compute its sensitivity

Stability Examples

CS 245 40

T(A) = σpredicate(A) (“Where”)

T(A) = πexprs(A) (“Select”)

T(A, B) = A ∪ B

T(A) = GroupBy(A, expr)
(retruns 1 record/group)

T(A) = A⨝B limited to at most
1 match per key

1

1

1

2

1

Stability

Partition Operator

Partition(dataset, key_list) returns a set of
IQueryables: one for each key in your list
» User provides the desired keys in advance

(e.g. “CA” or “NY”); can’t use to discover keys
» Lets PINQ use parallel composition rule

since the sets returned are all disjoint

Stability = 1

CS 245 41

Analyzing Queries in PINQ

User calls multiple set transformation ops and
finally one aggregation/result op
» Transformations are lazy; can’t see result

PINQ computes stability of set ops and
multiplies by sensitivity of each aggregate to
get total sensitivity

User provides an ε to aggregate; PINQ adds
noise proportional to sensitivity/ε
CS 245 42

Putting It All Together

CS 245 43

cricket: 127123.313

Putting It All Together

CS 245 44

Uses of Differential Privacy

Statistics collection about iOS features

“Randomized response”: clients add noise to
data they send instead of relying on provider

Research systems that use DP to measure
security (e.g. Vuvuzela messaging)
CS 245 45

queries
xbob + noise

xalice + noise

Outline

Security requirements

Key concepts and tools

Differential privacy

Other security tools

CS 245 46

Computing on Encrypted Data

Threat model: adversary has access to the
database server we run on (e.g. in cloud)

Idea: some encryption schemes allow
computing on data without decrypting it:

fenc(Enc(X)) = Enc(f(X))

Usually very expensive, but can be done
efficiently for some functions f!

CS 245 47

Example Systems

CryptDB, Mylar (MIT research projects)

Encrypted BigQuery (CryptDB on BigQuery)

Leverage properties of SQL to come up with
efficient encryption schemes & query plans

CS 245 48

Example Schemes

Equality checks with deterministic encryption

SELECT * FROM table WHERE state=“CA”

SELECT * FROM table WHERE state=“XAYDS9”

CS 245 49

Encrypt “state” column

Example Schemes

Equality checks with deterministic encryption

SELECT * FROM table WHERE state=“CA”

SELECT * FROM table WHERE state=“XAYDS9”

Potential challenges with this scheme:
» Adversary can see relative frequency of keys
» Adversary sees which keys are accessed on

each query (e.g. Matei logs in → CA key read)
CS 245 50

Encrypt “state” column

Other Encryption Schemes

Additive homomorphic encryption:

Enc(A + B) = Enc(A) ⍟ Enc(B)

Fully homomorphic encryption:

Enc(f(A)) = fenc(Enc(A))

Order-preserving encryption:

if A < B then Enc(A) < Enc(B)
CS 245 51

Possible but very expensive
(108 or more overhead)

Hardware Enclaves

Threat model: adversary has access to the
database server we run on (e.g. in cloud) but
can’t tamper with hardware

Idea: CPU provides an “enclave” that can
provably run some code isolated from the OS
» Enclaves returns a certificate signed by CPU

maker that it ran code C on argument A

CS 245 52

Hardware Enclaves in Practice

Already present in all Intel CPUs (Intel SGX),
and many Apple custom chips (T2, etc)

Initial applications were digital rights mgmt.,
secure boot, secure login
» Protect even against a compromised OS

Some research systems explored using these
for data analytics: Opaque, ObliDB, others

CS 245 53

Databases + Enclaves

1. Store data encrypted with an encryption
scheme that leaks nothing (randomized)

2. With each query, user includes a public key
kq to encrypt the result with

3. Database runs a function f in the enclave
that does query and encrypts result with kq

4. User can verify f ran, DB can’t see result!

CS 245 54
Performance is fast too (normal CPU speed)!

Are Enclaves Enough to Secure
Against Non-HW Adversaries?

CS 245 55

Are Enclaves Enough to Secure
Against Non-HW Adversaries?
Not quite! adversary can still learn info by
observing access patterns to RAM or timing
» Similar to some attacks on encrypted DBs

Oblivious algorithms can help prevent this
but add more computational cost
» Oblivious = same access pattern regardless

of underlying data, query result, etc

CS 245 56

Multi-Party Computation (MPC)

Threat model: participants p1, …, pn want to
compute some joint function f of their data but
don’t trust each other
» E.g. patient stats across 2 hospitals

Idea: protocols that compute f without
revealing anything else to participants
» Like with encryption, general computations

are possible but expensive

CS 245 57

Example: Secret Sharing

Users wants to store a secret value x among
n servers, but doesn’t fully trust them
» E.g. the servers are public clouds… what if

one gets hacked?

Idea: split x into “shares” xi so that all shares
are needed to recover x

Additive secret sharing: x = integer mod P,
xi are random integers so Σxi = x

CS 245 58

Secret Sharing Example

CS 245 59

User
x = 5 (mod 10)

x1 = 3
(mod 10)

x2 = 8
(mod 10)

x2 = 4
(mod 10)

Servers

3 + 8 + 4 = 5 (mod 10)

?? ??

Note: performance is quite fast (just additions)

Function Secret Sharing

Recent result that allows sharing some
functions too (keeping queries private)

Splinter (optional paper):
uses FSS to run private
SQL queries on public
data like Google Maps

CS 245 60

Splinter
Server
Library

Splinter
Server
Library

Splinter
Server
Library

Servers

Splinter Client

User

Parametrized query:
SELECT TOP 10 restaurant
WHERE city = ? AND cuisine = ?
ORDER BY rating

private parameters

Lineage Tracking and
Retraction
Goal: keep track of which data records were
derived from an individual input record
» Facilitate removing a user’s data in GDPR,

verifying compliance, etc

Some real systems provide this already at
low granularity, but could be baked into DB

CS 245 61

Summary

Security and data privacy are essential
concerns for data-intensive systems

Threat models are a systematic way to
measure security and reason about designs

Many nice theoretical tools exist to reason
about security needs of relational & math ops
» Build on declarative and relational APIs!

CS 245 62

