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Why Security & Privacy?

Data is valuable & can cause harm if released
» Example: medical records, purchase history, 

internal company documents, etc

Data releases can’t usually be “undone”

Security policies can be complex
» Each user can only see data from their friends
» Analyst can only query aggregate data
» Users can ask to delete their derived data
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Why Security & Privacy?
It’s the law! new regulations about user data:

US HIPAA: Health Insurance Portability & 
Accountability Act (1996)
» Mandatory encryption, access control, training

EU GDPR: General Data Protection 
Regulation (2018)
» Users can ask to see & delete their data

PCI: Payment Card Industry standard (2004)
» Required in contracts with MasterCard, etc
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Consequence

Security and privacy must be baked into the 
design of data-intensive systems
» Often a key differentiator for products!
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The Good News

Declarative interface to many data-intensive 
systems can enable powerful security features
» One of the “big ideas” in our class!

Example: System R’s access control on views
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Some Security Goals

Access Control: only the “right” users can 
perform various operations; typically relies on:
» Authentication: a way to verify user identity 

(e.g. password)
» Authorization: a way to specify what users 

may take what actions (e.g. file permissions)

Auditing: system records an incorruptible 
audit trail of who did each action
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Some Security Goals

Confidentiality: data is inaccessible to 
external parties (often via cryptography)

Integrity: data can’t be modified by external 
parties

Privacy: only a limited amount of information 
about “individual” users can be learned
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Clarifying These Goals
Say our goal was access control: only Matei can 
set CS 245 student grades on Axess

What scenarios should Axess protect against?
1. Bobby T. (an evil student) logging into Axess as 

himself and being able to change grades
2. Bobby sending hand-crafted network packets to 

Axess to change his grades
3. Bobby getting a job as a DB admin at Axess
4. Bobby guessing Matei’s password
5. Bobby blackmailing Matei to change his grade
6. Bobby discovering a flaw in AES to do #2
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Threat Models

To meaningfully reason about security, need a 
threat model: what adversaries may do
» Same idea as failure models!

For example, in our Axess scenario, assume:
» Adversaries only interact with Axess through 

its public API
» No crypto algorithm or software bugs
» No password theft
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Threat Models

No useful threat model can cover everything
» Goal is to cover the most feasible scenarios 

for adversaries to increase the cost of attacks

Threat models also let us divide security tasks 
across different components
» E.g. auth system handles passwords, 2FA
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Threat Models
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Useful Building Blocks

Encryption: encode data so that only parties 
with a key can efficiently decrypt

Cryptographic hash functions: hard to find 
items with a given hash (or collisions)

Secure channels (e.g. TLS): confidential, 
authenticated communication for 2 parties
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Security in a Typical DBMS

First-class concept of users + access control
» Views as in System R, tables, etc

Secure channels for network communication

Audit logs for analysis

Encrypt data on-disk (perhaps at OS level)
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Emerging Ideas for Security

Privacy metrics and enforcement thereof
(e.g. differential privacy)

Computing on encrypted data (e.g. CryptDB)

Hardware-assisted security (e.g. enclaves)

Multi-party computation (e.g. secret sharing)

CS 245 17



Outline

Security requirements

Key concepts and tools

Differential privacy

Other security tools

CS 245 18



Motivation

Many applications can be built on user data, 
but how to make sure that analysts with 
access to data don’t see personal secrets?

Example: what word is most likely to be typed 
after “Want to grab” in a text message?
» Need peoples’ texts but don’t give to analysts!

Example: what’s the most common diagnosis 
for hospital patients aged <40 in Palo Alto?
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Threat Model
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How to Define Privacy?

This is conceptually very tricky! How to 
distinguish between

SELECT TOP(disease) FROM patients WHERE 
state=“California”

and

SELECT TOP(disease) FROM patients WHERE 
name=“Matei Zaharia”
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How to Define Privacy?

Also want to defend against adversaries who 
have some side-information; for instance:

SELECT TOP(disease) FROM patients WHERE 
birth_year=“19XX” AND gender=“M” AND 
born_in=“Romania” AND ...

Also consider adversaries who do multiple 
queries (e.g. subtract 2 results)
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Differential Privacy

Privacy definition that tackles these concerns 
and others by looking at possible databases
» Idea: results that an adversary saw should be 

“nearly as likely” for a database without Matei

Definition: a randomized algorithm M is
ε-differentially private if for all S ⊆ Range(M),

Pr[M(A)∈S] ≤ Pr[M(B)∈S] eε·|A⊕B|
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Equivalent Definition

A randomized algorithm M is ε-differentially 
private if for all S⊆Range(M) and all sets A, B 
that differ in 1 element,

Pr[M(A)∈S] ≤ Pr[M(B)∈S] eε
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What Does It Mean?

Say an adversary runs some query and 
observes a result X

Adversary had some set of results, S, that 
lets them infer something about Matei if X∈S

Then:

Pr[X∈S | Matei∈DB] ≤ eε Pr[X∈S | Matei∉DB]

Pr[X∉S | Matei∈DB] ≤ eε Pr[X∉S | Matei∉DB]
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What Does It Mean?

Example (assume ε=0.1): 

SELECT TOP(diagnosis) FROM patients WHERE age<35 
AND city=“Palo Alto”

SELECT TOP(diagnosis) FROM patients WHERE age<35 
AND city=“Palo Alto” AND born=“Romania”

Does this mean Matei specifically takes drugs?
» Result would have been nearly as likely (within 10%) 

even if Matei were not in the database
» Could be we just got a low-probability result
» Could be most Romanians do drugs (no info on Matei)
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Some Nice Properties of 
Differential Privacy
Composition: can reason about the privacy 
effect of multiple (even dependent) queries

Let queries Mi each provide εi-differential 
privacy; then the sequence of queries {Mi} 
provides (Σi εi)-differential privacy

Proof:
Pr[∀i Mi(A)=ri] ≤ e(ε1+…+εn)|A⊕B| Pr[∀i Mi(B)=ri]
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Adversary’s ability to distinguish DBs A & B 
grows in a bounded way with each query



Some Nice Properties of 
Differential Privacy
Parallel composition: even better bounds if 
queries are on disjoint subsets

Let Mi each provide ε-differential privacy and 
read disjoint subsets of the data Di; then the set 
of queries {Mi} provides ε-differential privacy

Example: query both average patient age in CA 
and average patient age in NY
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Some Nice Properties of 
Differential Privacy
Easy to compute: can use known results for 
various operators, then compose for a query
» Enables systems to automatically compute 

privacy bounds given declarative queries!
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Disadvantages of Differential 
Privacy
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Disadvantages of Differential 
Privacy
Each user can only make a limited number of 
queries (more precisely, limited total ε)
» Their ε grows with each query and can’t shrink

How to set ε in practice?
» Hard to tell what various values mean, though 

there is a nice Bayesian interpretation
» Apple set ε=6 and researchers said it’s too high

Can’t query using arbitrary code (must know ε)
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Computing Differential 
Privacy Bounds
Let’s start with COUNT aggregates:
SELECT COUNT(*) FROM A

The randomized algorithm M(A) that returns 
|A| + Laplace(1/ε) is ε-differentially private
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Laplace(b) distribution:
p(x) = 1/(2b) e-|x|/b

Mean: 0
Variance: 2b2



Computing Differential 
Privacy Bounds
Let’s start with COUNT aggregates:
SELECT COUNT(*) FROM A

The randomized algorithm M(A) that returns 
|A| + Laplace(1/ε) is ε-differentially private
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Computing Differential 
Privacy Bounds
What about AVERAGE aggregates:
SELECT AVERAGE(x) FROM A
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Computing Differential 
Privacy Bounds
What about AVERAGE aggregates:
SELECT AVERAGE(x) FROM A

How much can one element of A affect result?
» In general case, unboundedly much! No privacy

• SELECT AVG(wealth) WHERE city=“Omaha, NB”

» If x ∈ [0,m] for all x in A, then by at most m
• Adding Laplace(m/ε) noise is ε-differentially private

Paper bounds AVG, SUM for values x ∈ [-1,1]
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Computing Differential 
Privacy Bounds
General notion to capture the impact of one 
element: sensitivity

Sensitivity of a function f: U→ℝ on sets is

Δf = maxA,B∈U differ in 1 element |f(A) – f(B)|
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Sensitivity Examples

f(A) = |A|

f(A) = sum(A), x∈[0,m] ∀x∈A

f(A) = avg(A), x∈[0,m] ∀x∈A

f(A) = |{x∈A | x is male}|

f(A) = |A⨝B|

f(A) = |A⨝B|, each key has
≤ k matches
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Multi-dimensional Sensitivity

Can also define sensitivity for functions that 
return multiple numerical results:

Sensitivity of a function f: U→ℝd on sets is

Δf = maxA,B∈U differ in 1 element ||f(A) – f(B)||1

Example: f fits a linear model to the data...
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Computing Differential 
Privacy Bounds
Another concept, used to reason about set 
transformations in PINQ: stability

A function T on sets is c-stable if for any two 
input sets A and B,

|T(A) ⊕ T(B)| ≤ c |A ⊕ B| 
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Number of records
that differ in A and B

PINQ’s approach: let user do any # of set ops; 
compute their stability; then let them do one 

aggregate op and compute its sensitivity



Stability Examples
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T(A) = σpredicate(A) (“Where”)

T(A) = πexprs(A) (“Select”)

T(A, B) = A ∪ B

T(A) = GroupBy(A, expr)
(retruns 1 record/group)

T(A) = A⨝B limited to at most
1 match per key
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Partition Operator

Partition(dataset, key_list) returns a set of 
IQueryables: one for each key in your list
» User provides the desired keys in advance 

(e.g. “CA” or “NY”); can’t use to discover keys
» Lets PINQ use parallel composition rule 

since the sets returned are all disjoint

Stability = 1
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Analyzing Queries in PINQ

User calls multiple set transformation ops and 
finally one aggregation/result op
» Transformations are lazy; can’t see result

PINQ computes stability of set ops and 
multiplies by sensitivity of each aggregate to 
get total sensitivity

User provides an ε to aggregate; PINQ adds 
noise proportional to sensitivity/ε
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Putting It All Together
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Putting It All Together
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Uses of Differential Privacy

Statistics collection about iOS features

“Randomized response”: clients add noise to 
data they send instead of relying on provider

Research systems that use DP to measure 
security (e.g. Vuvuzela messaging)
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Computing on Encrypted Data

Threat model: adversary has access to the 
database server we run on (e.g. in cloud)

Idea: some encryption schemes allow 
computing on data without decrypting it:

fenc(Enc(X)) = Enc(f(X))

Usually very expensive, but can be done 
efficiently for some functions f! 
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Example Systems

CryptDB, Mylar (MIT research projects)

Encrypted BigQuery (CryptDB on BigQuery)

Leverage properties of SQL to come up with 
efficient encryption schemes & query plans
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Example Schemes

Equality checks with deterministic encryption

SELECT * FROM table WHERE state=“CA”

SELECT * FROM table WHERE state=“XAYDS9”
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Example Schemes

Equality checks with deterministic encryption

SELECT * FROM table WHERE state=“CA”

SELECT * FROM table WHERE state=“XAYDS9”

Potential challenges with this scheme:
» Adversary can see relative frequency of keys
» Adversary sees which keys are accessed on 

each query (e.g. Matei logs in → CA key read)
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Other Encryption Schemes

Additive homomorphic encryption:

Enc(A + B) = Enc(A) ⍟ Enc(B)

Fully homomorphic encryption:

Enc(f(A)) = fenc(Enc(A))

Order-preserving encryption:

if A < B then Enc(A) < Enc(B)
CS 245 51
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Hardware Enclaves

Threat model: adversary has access to the 
database server we run on (e.g. in cloud) but 
can’t tamper with hardware

Idea: CPU provides an “enclave” that can 
provably run some code isolated from the OS
» Enclaves returns a certificate signed by CPU 

maker that it ran code C on argument A
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Hardware Enclaves in Practice

Already present in all Intel CPUs (Intel SGX), 
and many Apple custom chips (T2, etc)

Initial applications were digital rights mgmt., 
secure boot, secure login
» Protect even against a compromised OS

Some research systems explored using these 
for data analytics: Opaque, ObliDB, others
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Databases + Enclaves

1. Store data encrypted with an encryption 
scheme that leaks nothing (randomized)

2. With each query, user includes a public key 
kq to encrypt the result with

3. Database runs a function f in the enclave 
that does query and encrypts result with kq

4. User can verify f ran, DB can’t see result!
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Are Enclaves Enough to Secure 
Against Non-HW Adversaries?
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Are Enclaves Enough to Secure 
Against Non-HW Adversaries?
Not quite! adversary can still learn info by 
observing access patterns to RAM or timing
» Similar to some attacks on encrypted DBs

Oblivious algorithms can help prevent this 
but add more computational cost
» Oblivious = same access pattern regardless 

of underlying data, query result, etc
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Multi-Party Computation (MPC)

Threat model: participants p1, …, pn want to 
compute some joint function f of their data but 
don’t trust each other
» E.g. patient stats across 2 hospitals

Idea: protocols that compute f without 
revealing anything else to participants
» Like with encryption, general computations 

are possible but expensive
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Example: Secret Sharing

Users wants to store a secret value x among 
n servers, but doesn’t fully trust them
» E.g. the servers are public clouds… what if 

one gets hacked?

Idea: split x into “shares” xi so that all shares 
are needed to recover x

Additive secret sharing: x = integer mod P,
xi are random integers so Σxi = x

CS 245 58



Secret Sharing Example
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User
x = 5 (mod 10)

x1 = 3
(mod 10)

x2 = 8
(mod 10)

x2 = 4
(mod 10)

Servers

3 + 8 + 4 = 5 (mod 10)

?? ??

Note: performance is quite fast (just additions)



Function Secret Sharing

Recent result that allows sharing some 
functions too (keeping queries private)

Splinter (optional paper): 
uses FSS to run private
SQL queries on public
data like Google Maps
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Splinter 
Server 
Library

Splinter 
Server 
Library

Splinter 
Server 
Library

Servers

Splinter Client

User

Parametrized query:
SELECT TOP 10 restaurant
WHERE city = ? AND cuisine = ?
ORDER BY rating

private parameters



Lineage Tracking and 
Retraction
Goal: keep track of which data records were 
derived from an individual input record
» Facilitate removing a user’s data in GDPR, 

verifying compliance, etc

Some real systems provide this already at 
low granularity, but could be baked into DB
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Summary

Security and data privacy are essential 
concerns for data-intensive systems

Threat models are a systematic way to 
measure security and reason about designs

Many nice theoretical tools exist to reason 
about security needs of relational & math ops
» Build on declarative and relational APIs!
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