
Course Review

Instructor: Matei Zaharia
cs245.stanford.edu

https://cs245.stanford.edu/


What Are
Data-Intensive Systems?
Relational databases: most popular type of 
data-intensive system (MySQL, Oracle, etc)

Many systems facing similar concerns:
message queues, key-value stores, streaming 
systems, ML frameworks, your custom app?

CS 245 2

Goal: learn the main issues and principles that 
span all data-intensive systems



Typical System Challenges

Reliability in the face of hardware crashes, 
bugs, bad user input, etc

Concurrency: access by multiple users

Performance: throughput, latency, etc

Access interface from many, changing apps

Security and data privacy

CS 245 3



Basic Components

CS 245 4

Logical dataset
(e.g. table, graph)

Data 
mgmt. 
system Physical storage

(data structures)

Administrator

Clients / users

Queries



Two Big Ideas

Declarative interfaces
» Apps specify what they want, not how to do it
» Example: “store a table with 2 integer columns”, 

but not how to encode it on disk
» Example: “count records where column1 = 5”

Transactions
» Encapsulate multiple app actions into one 
atomic request (fails or succeeds as a whole)

» Concurrency models for multiple users
» Clear interactions with failure recovery

CS 245 6



Key Concepts: Architecture

Traditional RDBMS: self-contained end to 
end system

Data lake: separate storage from compute 
engines to let many engines use same data

CS 245 7



Key Concepts: Hardware

CS 245 8

latency (s)

throughput (bytes/s)

storage capacity
(bytes, bytes/$)

CPU

Latency, throughput, capacity

Random vs sequential I/Os

Caching & 5-minute rule



Key Concepts: Data Storage

Field encoding

Record encoding: fixed/variable format, etc

Table encoding: row or column oriented

Data ordering

Indexes: dense, sparse, B+ trees, hashing, 
multi-dimensional

CS 245 9



Key Concepts: Query 
Execution

CS 245 10

Query representation 
(e.g. SQL)

Logical query plan
(e.g. relational algebra)

Optimized logical plan

Physical plan
(code/operators to run)

Many execution 
methods: per-record 
exec, vectorization, 

compilation



Key Concepts:
Relational Algebra

∩, ⋃, –, ⨯, σ, P, ⨝, G

Algebraic rules involving these

CS 245 11



Key Concepts: Optimization

Rule-based: systematically replace some 
expressions with other expressions

Cost-based: propose several execution plans 
and pick best based on a cost model

Adaptive: update execution plan at runtime

Data statistics: can be computed or 
estimated cheaply to guide decisions

CS 245 12



Key Concepts: Correctness

Consistency constraints: generic way to 
define correctness with Boolean predicates

Transaction: collection of actions that 
preserve consistency

Transaction API: commit, abort, etc

CS 245 13

Consistent
DB

Consistent
DB’T



Key Concepts: Recovery

Failure models

Undo, redo, and undo/redo logging

Recovery rules for various algorithms 
(including handling crashes during recovery)

Checkpointing and its effect on recovery

External actions → idempotence, 2PC

CS 245 14



Key Concepts: Concurrency

Isolation levels, especially serializability
» Testing for serializability: conflict 

serializability, precedence graphs

Locking: lock modes, hierarchical locks, and 
lock schedules (well formed, legal, 2PL)

Optimistic validation: rules and pros+cons

Recoverable, ACR & strict schedules

CS 245 15



Categories of
Schedules

CS 245 16

Val

2PL

Conflict serializable

Serializable

Serial



Key Concepts: Distributed
Partitioning and replication

Consensus: nodes eventually agree on one
value despite up to F failures

2-Phase commit: parties all agree to commit 
unless one aborts (no permanent failures)

Parallel queries: comm cost, load balance, faults

BASE and relaxing consistency

CS 245 17



Key Concepts: Security and 
Data Privacy
Threat models

Security goals: authentication, authorization, 
auditing, confidentiality, integrity etc

Differential privacy: definitions, computing 
sensitivity & stability

CS 245 18



Putting These Concepts 
Together

How can you integrate these different 
concepts into a coherent system design?

How to change system to meet various goals 
(performance, concurrency, security, etc)?

CS 245 19


