
Delta Lake:
Making Cloud Data Lakes
Transactional and Scalable

Stanford University, 2019-05-15

Reynold Xin
@rxin

About Me

Databricks co-founder & Chief Architect
- Designed most major things in “modern day” Apache Spark
- #1 contributor to Spark by commits and net lines deleted

PhD in databases from Berkeley

Building data analytics platform is hard

Data streams Insights

????

Traditional Data Warehouses

OLTP
databases

InsightsData Warehouse

ETL SQL

Challenges with Data Warehouses

ETL pipelines are often complex and slow
Ad-hoc pipelines to process data and ingest into warehouse
No insights until daily data dumps have been processed

Performance is expensive
Scaling up/out usually comes at a high cost

Workloads often limited to SQL and BI tools
Data in proprietary formats
Hard to do integrate streaming, ML, and AI workloads

Data
Warehouse

Dream of Data Lakes

Data Lake

scalable ETL

SQL

ML, AI

streaming

Data streams Insights

Data Lakes + Spark = Awesome!

Data LakeData streams Insights

STRUCTURED
STREAMING

SQL, ML,
STREAMING

The 1st Unified Analytics Engine

Advantages of Data Lakes

ETL pipelines are complex and slow simpler and fast
Unified Spark API between batch and streaming simplifies ETL
Raw unstructured data available as structured data in minutes

Performance is expensive cheaper
Easy and cost-effective to scale out compute and storage

Workloads limited not limited anything!
Data in files with open formats
Integrate with data processing and BI tools
Integrate with ML and AI workloads and tools

Data Lake

Challenges of Data Lakes
in practice

ETL @

Challenges of Data Lakes
in practice

Evolution of a Cutting-Edge Data Pipeline

Events

?
Reporting

Streaming
Analytics

Data Lake

Evolution of a Cutting-Edge Data Pipeline

Events

Reporting

Streaming
Analytics

Data Lake

Challenge #1: Historical Queries?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

Reporting

Events
λ-arch1

1

1

Challenge #2: Messy Data?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

Reporting

Events

Validation

λ-arch
Validation

1

21

1

2

Reprocessing

Challenge #3: Mistakes and Failures?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

Reporting

Events

Validation

λ-arch
Validation

Reprocessing

Partitioned

1

2

3

1

1

3

2

Reprocessing

Challenge #4: Query Performance?

Data Lake

λ-arch

λ-arch

Streaming
Analytics

Reporting

Events

Validation

λ-arch
Validation

Reprocessing

Compaction

Partitioned

Compact
Small Files

Scheduled to
Avoid Compaction

1

2

3

1

1

2

4

4

4

2

Data Lake Reliability Challenges

Failed production jobs leave data in corrupt
state requiring tedious recovery

Lack of schema enforcement creates
inconsistent and low quality data

Lack of consistency makes it almost impossible to mix
appends, deletes, upserts and get consistent reads

Data Lake Performance Challenges
Too many small or very big files - more time opening &
closing files rather than reading content (worse with
streaming)

Partitioning aka “poor man’s indexing”- breaks down
when data has many dimensions and/or high cardinality
columns

Neither storage systems, nor processing engines are
great at handling very large number of subdir/files

Figuring out what to read is too slow

Data integrity is hard

Band-aid solutions made it worse!

Everyone has the same problems

THE GOOD
OF DATA LAKES
• Massive scale out
• Open Formats
• Mixed workloads

THE GOOD
OF DATA WAREHOUSES
• Pristine Data
• Transactional Reliability
• Fast SQL Queries

DELTA

The
LOW-LATENCY

of streaming

The
RELIABILITY &

PERFORMANCE
of data warehouse

The
SCALE

of data lake

DELTA

Scalable storage

Transactional log
+=

DELTA

Scalable storage

Transactional log

pathToTable/
+---- 000.parquet
+---- 001.parquet
+---- 002.parquet
+ ...

table data stored as Parquet files
on HDFS, AWS S3, Azure Blob Stores

sequence of metadata files to track
operations made on the table

stored in scalable storage along with table

|
+---- _delta_log/

+---- 000.json
+---- 001.json
...

|

+---- _delta_log/

+---- 000.json

+---- 001.json

...

Log Structured Storage

Changes to the table
are stored as ordered,
atomic commits

Each commit is a set of
actions file in directory
_delta_log

Add 001.parquet

Add 002.parquet

Remove 001.parquet

Remove 002.parquet

Add 003.parquet

UPDATE actions

INSERT actions

|

+---- _delta_log/

+---- 000.json

+---- 001.json

...

Log Structured Storage

Readers read the log in
atomic units thus reading
consistent snapshots

Add 001.parquet

Add 002.parquet

Remove 001.parquet

Remove 002.parquet

Add 003.parquet

readers will read
either [001+002].parquet
or 003.parquet
and nothing in-between

UPDATE actions

INSERT actions

Mutual Exclusion

Concurrent writers
need to agree on the
order of changes

New commit files must
be created mutually
exclusively

000.json

001.json

002.json

Writer 1 Writer 2

only one of the writers trying
to concurrently write 002.json

must succeed

Challenges with cloud storage

Different cloud storage systems have different semantics to
provide atomic guarantees

Cloud Storage Atomic
Files
Visibility

Atomic
Put if
absent

Solution

Azure Blob Store,
Azure Data Lake

✘ ✔ Write to temp file, rename to
final file if not present

AWS S3 ✔ ✘ Separate service to perform all
writes directly (single writer)

Concurrency Control

Pessimistic Concurrency
Block others from writing anything
Hold lock, write data files, commit to log

Optimistic Concurrency
Assume it’ll be okay and write data files
Try to commit to the log, fail on conflict
Enough as write concurrency is usually low

✔Avoid wasted work

✘Distributed locks

✔Mutual exclusion is enough!

✘ Breaks down if there a lot
of conflicts

Solving Conflicts Optimistically

1. Record start version
2. Record reads/writes
3. If someone else wins,

check if anything you
read has changed.

4. Try again.

000000.json

000001.json

000002.json

User 1
R: A

W: B

User 2
R: A

W: C

new file C does not conflict with new file B,
so retry and commit successfully as 2.json

Solving Conflicts Optimistically

1. Record start version
2. Record reads/writes
3. If someone else wins,

check if anything you
read has changed.

4. Try again.

000000.json

000001.json

User 1
R: A

W: A,B

User 2
R: A

W: A,C

Deletions of file A by user 1 conflicts with
deletion by user 2, user 2 operation fails

Metadata/Checkpoints as Data

Large tables can have millions of files in them! Even pulling them
out of Hive [MySQL] would be a bottleneck.

Add 1.parquet

Add 2.parquet
Remove 1.parquet

Remove 2.parquet

Add 3.parquet

Checkpoint

Challenges solved: Reliability

Problem:
Failed production jobs leave data in
corrupt state requiring tedious recovery

Solution:
Failed write jobs do not update the commit log,
hence partial / corrupt files not visible to readers DELTA

Challenges solved: Reliability

Challenge :
Lack of consistency makes it almost impossible to mix
appends, deletes, upserts and get consistent reads

Solution:
All reads have full snapshot consistency
All successful writes are consistent
In practice, most writes don't conflict
Tunable isolation levels (serializability by default)

DELTA

Challenges solved: Reliability
Challenge :
Lack of schema enforcement creates
inconsistent and low quality data

Solution:
Schema recorded in the log
Fails attempts to commit data with incorrect schema
Allows explicit schema evolution
Allows invariant and constraint checks (high data quality)

DELTA

Challenges solved: Performance
Challenge:
Too many small files increase resource
usage significantly

Solution:
Transactionally performed compaction using OPTIMIZE

OPTIMIZE table WHERE date = '2019-04-04'
DELTA

Challenges solved: Performance
Challenge:
Partitioning breaks down with many
dimensions and/or high cardinality columns

Solution:
Optimize using multi-dimensional clustering on multiple
columns

OPTIMIZE conns WHERE date = '2019-04-04'
ZORDER BY (srcIP, destIP)

DELTA

Querying connection data at Apple

Ad-hoc query of connection data based on different columns

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND srcIp = '1.1.1.1'

Connections
- date
- srcIp
- dstIp

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND dstIp = '1.1.1.1'

partitioning is bad as
cardinality is high

> PBs
> trillions of rows

Multidimensional Sorting

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND srcIp = '1.1.1.1'

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
sr

cI
p

dstIp

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND dstIp = '1.1.1.1'

Multidimensional Sorting
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND srcIp = '1.1.1.1'

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND dstIp = '1.1.1.1' sr

cI
p

dstIp

ideal file size = 4 rows

Multidimensional Sorting
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND srcIp = '1.1.1.1'

sr
cI

p

dstIp

2 files

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND dstIp = '1.1.1.1'

Multidimensional Sorting
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND srcIp = '1.1.1.1'

sr
cI

p

dstIp

2 files

8 files
SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND dstIp = '1.1.1.1'

great for major sorting
dimension, not for others

Multidimensional Clustering
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
sr

cI
p

dstIp

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND srcIp = '1.1.1.1'

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND dstIp = '1.1.1.1'

zorder space
filling curve

Multidimensional Clustering
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
sr

cI
p

dstIp

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND srcIp = '1.1.1.1'

SELECT count(*) FROM conns
WHERE date = '2019-04-04'
AND dstIp = '1.1.1.1'

reasonably good for
all dimensions

4 files

4 files

Data Pipeline @ Apple

Security Infra
IDS/IPS, DLP, antivirus, load
balancers, proxy servers

Cloud Infra & Apps
AWS, Azure, Google Cloud

Servers Infra
Linux, Unix, Windows

Network Infra
Routers, switches, WAPs,
databases, LDAP

Detect signal across user, application and network logs

Quickly analyze the blast radius with ad hoc queries

Respond quickly in an automated fashion

Scaling across petabytes of data and 100’s of security analysts

> 100TB new data/day
> 300B events/day

Messy data not ready
for analytics

DATALAKE1

DW3

DW2

DW1
Incidence
Response

Alerting

Reports

Data Pipeline @ Apple

Security Infra
IDS/IPS, DLP, antivirus, load
balancers, proxy servers

Cloud Infra & Apps
AWS, Azure, Google Cloud

Servers Infra
Linux, Unix, Windows

Network Infra
Routers, switches, WAPs,
databases, LDAP

Separate warehouses for
each type of analytics

Dump Complex ETL
DATALAKE2

> 100TB new data/day
> 300B events/day

Messy data not ready
for analytics

DATALAKE1

DW3

DW2

DW1
Incidence
Response

Alerting

Reports

Data Pipeline @ Apple

Security Infra
IDS/IPS, DLP, antivirus, load
balancers, proxy servers

Cloud Infra & Apps
AWS, Azure, Google Cloud

Servers Infra
Linux, Unix, Windows

Network Infra
Routers, switches, WAPs,
databases, LDAP

Separate warehouses for
each type of analytics

Dump Complex ETL

Took 20 engineers + 24 weeks
Hours of delay in accessing data

Very expensive to scale
Only 2 weeks of data in proprietary formats

No advanced analytics (ML)

DATALAKE2

Incidence
Response

Alerting

Reports
STRUCTURED
STREAMING

Dump Complex
ETL

DELTA SQL, ML,
STREAMING

Took 2 engineers + 2 weeks
Data usable in minutes/seconds

Easy and cheaper to scale
Store 2 years of data in open formats

Enables advanced analytics
KEYNOTE TALK

Data Pipeline @ Apple

https://vimeo.com/274267634

Current ETL pipeline at Databricks

λ-arch

Validation

Reprocessing

Compaction

1

2

3

4

DELTA

DELTA

DELTA

DELTA

Streaming
Analytics

Reporting

Easy as data in short term and long term data in one location

Easy and seamless with Delta's transactional guarantees

Not needed, Delta handles both short and long term data

CREATE TABLE ...

USING delta

…

dataframe
.write
.format("delta")
.save("/data")

Easy to use Delta with Spark APIs

CREATE TABLE ...

USING parquet

...

dataframe
.write
.format("parquet")
.save("/data")

Instead of parquet... … simply say delta

Scalable Compute & Storage

ACID Transactions & Data Validation

Data Indexing & Caching (10-100x)

Open source & data stored as Parquet

Integrated with Structured Streaming

MASSIVE SCALE

RELIABILITY

PERFORMANCE

LOW-LATENCY

OPEN

DELTA

Questions?

5
4

