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About Me

Databricks co-founder & Chief Architect
- Designed most major things in “modern day” Apache Spark
- #1 contributor to Spark by commits and net lines deleted

PhD in databases from Berkeley



Building data analytics platform is hard

Data streams Insights

????



Traditional Data Warehouses 

OLTP 
databases

InsightsData Warehouse

ETL SQL



Challenges with Data Warehouses

ETL pipelines are often complex and slow
Ad-hoc pipelines to process data and ingest into warehouse
No insights until daily data dumps have been processed  

Performance is expensive
Scaling up/out usually comes at a high cost

Workloads often limited to SQL and BI tools
Data in proprietary formats
Hard to do integrate streaming, ML, and AI workloads

Data 
Warehouse



Dream of Data Lakes

Data Lake

scalable ETL

SQL

ML, AI

streaming

Data streams Insights



Data Lakes + Spark = Awesome!

Data LakeData streams Insights

STRUCTURED 
STREAMING

SQL, ML, 
STREAMING

The 1st Unified Analytics Engine



Advantages of Data Lakes

ETL pipelines are complex and slow simpler and fast
Unified Spark API between batch and streaming simplifies ETL
Raw unstructured data available as structured data in minutes

Performance is expensive cheaper
Easy and cost-effective to scale out compute and storage

Workloads limited not limited anything!
Data in files with open formats
Integrate with data processing and BI tools
Integrate with ML and AI workloads and tools

Data Lake



Challenges of Data Lakes 
in practice



ETL @

Challenges of Data Lakes 
in practice



Evolution of a Cutting-Edge Data Pipeline

Events

?
Reporting

Streaming
Analytics

Data Lake



Evolution of a Cutting-Edge Data Pipeline

Events

Reporting

Streaming
Analytics

Data Lake



Challenge #1: Historical Queries?

Data Lake

λ-arch

λ-arch
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Challenge #2: Messy Data?

Data Lake

λ-arch
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Reprocessing

Challenge #3: Mistakes and Failures?

Data Lake

λ-arch

λ-arch
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Reprocessing

Challenge #4: Query Performance?

Data Lake

λ-arch
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Data Lake Reliability Challenges

Failed production jobs leave data in corrupt 
state requiring tedious recovery

Lack of schema enforcement creates 
inconsistent and low quality data 

Lack of consistency makes it almost impossible to mix 
appends, deletes, upserts and get consistent reads



Data Lake Performance Challenges
Too many small or very big files - more time opening & 
closing files rather than reading content (worse with 
streaming)

Partitioning aka “poor man’s indexing”- breaks down 
when data has  many dimensions and/or high cardinality 
columns

Neither storage systems, nor processing engines are 
great at handling very large number of subdir/files



Figuring out what to read is too slow



Data integrity is hard



Band-aid solutions made it worse!



Everyone has the same problems



THE GOOD 
OF DATA LAKES
• Massive scale out
• Open Formats
• Mixed workloads

THE GOOD 
OF DATA WAREHOUSES
• Pristine Data
• Transactional Reliability
• Fast SQL Queries



DELTA

The
LOW-LATENCY

of streaming

The
RELIABILITY &

PERFORMANCE
of data warehouse

The
SCALE

of data lake



DELTA

Scalable storage

Transactional log
+=



DELTA

Scalable storage

Transactional log

pathToTable/
+---- 000.parquet
+---- 001.parquet
+---- 002.parquet
+ ...

table data stored as Parquet files 
on HDFS, AWS S3, Azure Blob Stores

sequence of metadata files to track 
operations made on the table

stored in scalable storage along with table

|
+---- _delta_log/

+---- 000.json
+---- 001.json
...



|

+---- _delta_log/

+---- 000.json

+---- 001.json

...

Log Structured Storage

Changes to the table 
are stored as ordered, 
atomic commits 

Each commit is a set of 
actions file in directory 
_delta_log

Add 001.parquet

Add 002.parquet

Remove 001.parquet

Remove 002.parquet

Add 003.parquet

UPDATE actions

INSERT actions



|

+---- _delta_log/

+---- 000.json

+---- 001.json

...

Log Structured Storage

Readers read the log in 
atomic units thus reading 
consistent snapshots

Add 001.parquet

Add 002.parquet

Remove 001.parquet

Remove 002.parquet

Add 003.parquet

readers will read 
either [001+002].parquet 
or 003.parquet
and nothing in-between

UPDATE actions

INSERT actions



Mutual Exclusion

Concurrent writers 
need to agree on the 
order of changes

New commit files must 
be created mutually 
exclusively

000.json

001.json

002.json

Writer 1 Writer 2

only one of the writers trying 
to concurrently write 002.json 

must succeed



Challenges with cloud storage

Different cloud storage systems have different semantics to 
provide atomic guarantees

Cloud Storage Atomic 
Files 
Visibility

Atomic 
Put if 
absent

Solution

Azure Blob Store, 
Azure Data Lake

✘ ✔ Write to temp file, rename to 
final file if not present

AWS S3 ✔ ✘ Separate service to perform all 
writes directly (single writer)



Concurrency Control

Pessimistic Concurrency 
Block others from writing anything
Hold lock, write data files, commit to log

Optimistic Concurrency
Assume it’ll be okay and write data files
Try to commit to the log, fail on conflict 
Enough as write concurrency is usually low

✔Avoid wasted work

✘Distributed locks

✔Mutual exclusion is enough!

✘ Breaks down if there a lot 
of conflicts



Solving Conflicts Optimistically

1. Record start version
2. Record reads/writes
3. If someone else wins, 

check if anything you 
read has changed.

4. Try again.

000000.json

000001.json

000002.json

User 1
R: A

W: B

User 2
R: A

W: C

new file C does not conflict with new file B, 
so retry and commit successfully as 2.json



Solving Conflicts Optimistically

1. Record start version
2. Record reads/writes
3. If someone else wins, 

check if anything you 
read has changed.

4. Try again.

000000.json

000001.json

User 1
R: A

W: A,B

User 2
R: A

W: A,C

Deletions of file A by user 1 conflicts with 
deletion by user 2, user 2 operation fails



Metadata/Checkpoints as Data

Large tables can have millions of files in them!  Even pulling them 
out of Hive [MySQL] would be a bottleneck.

Add 1.parquet

Add 2.parquet
Remove 1.parquet

Remove 2.parquet

Add 3.parquet

Checkpoint



Challenges solved: Reliability

Problem:
Failed production jobs leave data in 
corrupt state requiring tedious recovery

Solution:
Failed write jobs do not update the commit log, 
hence partial / corrupt files not visible to readers DELTA



Challenges solved: Reliability

Challenge :
Lack of consistency makes it almost impossible to mix 
appends, deletes, upserts and get consistent reads

Solution:
All reads have full snapshot consistency
All successful writes are consistent
In practice, most writes don't conflict 
Tunable isolation levels (serializability by default)

DELTA



Challenges solved: Reliability
Challenge :
Lack of schema enforcement creates 
inconsistent and low quality data 

Solution:
Schema recorded in the log
Fails attempts to commit data with incorrect schema
Allows explicit schema evolution
Allows invariant and constraint checks (high data quality)

DELTA



Challenges solved: Performance
Challenge:
Too many small files increase resource 
usage significantly

Solution:
Transactionally performed compaction using OPTIMIZE 

OPTIMIZE table WHERE date = '2019-04-04'
DELTA



Challenges solved: Performance
Challenge:
Partitioning breaks down with  many 
dimensions and/or high cardinality columns

Solution:
Optimize using multi-dimensional clustering on multiple 
columns

OPTIMIZE conns WHERE date = '2019-04-04'
ZORDER BY (srcIP, destIP)

DELTA



Querying connection data at Apple

Ad-hoc query of connection data based on different columns

SELECT count(*) FROM conns 
WHERE date = '2019-04-04'
AND srcIp = '1.1.1.1'

Connections
- date
- srcIp
- dstIp

SELECT count(*) FROM conns 
WHERE date = '2019-04-04' 
AND dstIp = '1.1.1.1'

partitioning is bad as 
cardinality is high

> PBs
> trillions of rows



Multidimensional Sorting

SELECT count(*) FROM conns 
WHERE date = '2019-04-04' 
AND srcIp = '1.1.1.1'
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SELECT count(*) FROM conns 
WHERE date = '2019-04-04' 
AND dstIp = '1.1.1.1'



Multidimensional Sorting
1 2 3 4 5 6 7 8
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SELECT count(*) FROM conns 
WHERE date = '2019-04-04' 
AND srcIp = '1.1.1.1'

SELECT count(*) FROM conns 
WHERE date = '2019-04-04' 
AND dstIp = '1.1.1.1' sr

cI
p

dstIp

ideal file size = 4 rows



Multidimensional Sorting
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

SELECT count(*) FROM conns 
WHERE date = '2019-04-04' 
AND srcIp = '1.1.1.1'

sr
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p

dstIp

2 files

SELECT count(*) FROM conns 
WHERE date = '2019-04-04' 
AND dstIp = '1.1.1.1'



Multidimensional Sorting
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SELECT count(*) FROM conns 
WHERE date = '2019-04-04' 
AND srcIp = '1.1.1.1'

sr
cI

p

dstIp

2 files

8 files
SELECT count(*) FROM conns 
WHERE date = '2019-04-04' 
AND dstIp = '1.1.1.1'

great for major sorting 
dimension, not for others



Multidimensional Clustering
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SELECT count(*) FROM conns 
WHERE date = '2019-04-04' 
AND srcIp = '1.1.1.1'

SELECT count(*) FROM conns 
WHERE date = '2019-04-04' 
AND dstIp = '1.1.1.1'

zorder space 
filling curve



Multidimensional Clustering
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SELECT count(*) FROM conns 
WHERE date = '2019-04-04' 
AND srcIp = '1.1.1.1'

SELECT count(*) FROM conns 
WHERE date = '2019-04-04' 
AND dstIp = '1.1.1.1'

reasonably good for 
all dimensions

4 files

4 files



Data Pipeline @ Apple

Security Infra
IDS/IPS, DLP, antivirus, load 
balancers, proxy servers 

Cloud Infra & Apps
AWS, Azure, Google Cloud 

Servers Infra
Linux, Unix, Windows

Network Infra
Routers, switches, WAPs, 
databases, LDAP

Detect signal across user, application and network logs  

Quickly analyze the blast radius with ad hoc queries 

Respond quickly in an automated fashion 

Scaling across petabytes of data and 100’s of security analysts

> 100TB new data/day
> 300B events/day



Messy data not ready 
for analytics

DATALAKE1

DW3

DW2

DW1
Incidence 
Response

Alerting

Reports

Data Pipeline @ Apple

Security Infra
IDS/IPS, DLP, antivirus, load 
balancers, proxy servers 

Cloud Infra & Apps
AWS, Azure, Google Cloud 

Servers Infra
Linux, Unix, Windows

Network Infra
Routers, switches, WAPs, 
databases, LDAP

Separate warehouses for 
each type of analytics

Dump Complex ETL
DATALAKE2

> 100TB new data/day
> 300B events/day



Messy data not ready 
for analytics

DATALAKE1

DW3

DW2

DW1
Incidence 
Response

Alerting

Reports

Data Pipeline @ Apple

Security Infra
IDS/IPS, DLP, antivirus, load 
balancers, proxy servers 

Cloud Infra & Apps
AWS, Azure, Google Cloud 

Servers Infra
Linux, Unix, Windows

Network Infra
Routers, switches, WAPs, 
databases, LDAP

Separate warehouses for 
each type of analytics

Dump Complex ETL

Took 20 engineers + 24 weeks
Hours of delay in accessing data

Very expensive to scale
Only 2 weeks of data in proprietary formats 

No advanced analytics (ML)

DATALAKE2



Incidence 
Response

Alerting

Reports
STRUCTURED 
STREAMING

Dump Complex 
ETL

DELTA SQL, ML, 
STREAMING

Took 2 engineers + 2 weeks
Data usable in minutes/seconds

Easy and cheaper to scale
Store 2 years of data in open formats

Enables advanced analytics
KEYNOTE TALK

Data Pipeline @ Apple

https://vimeo.com/274267634


Current ETL pipeline at Databricks

λ-arch

Validation

Reprocessing

Compaction

1

2

3

4

DELTA

DELTA

DELTA

DELTA

Streaming
Analytics

Reporting

Easy as data in short term and long term data in one location

Easy and seamless with Delta's transactional guarantees

Not needed, Delta handles both short and long term data



CREATE TABLE ... 

USING delta

…

dataframe
.write
.format("delta")
.save("/data")

Easy to use Delta with Spark APIs

CREATE TABLE ... 

USING parquet

... 

dataframe
.write
.format("parquet")
.save("/data")

Instead of parquet... … simply say delta



Scalable Compute & Storage

ACID Transactions & Data Validation

Data Indexing & Caching (10-100x)

Open source & data stored as Parquet

Integrated with Structured Streaming

MASSIVE SCALE

RELIABILITY

PERFORMANCE

LOW-LATENCY

OPEN

DELTA



Questions?
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