General Instructions

Submission instructions: These questions require thought but do not require long answers. Please be as concise as possible. You should submit your answers as a writeup in PDF format via GradeScope and code via the Snap submission site.

Submitting writeup: Prepare answers to the homework questions into a single PDF file and submit it via http://gradescope.com. Make sure that the answer to each question is on a separate page. It is also important to tag your answers correctly on Gradescope. We will deduct 1 point for each incorrectly tagged subproblem. This means you can lose up to 10 points for incorrect tagging.

Submitting code: Upload your code at http://snap.stanford.edu/submit. Put all the code for a single question into a single file and upload it.

Questions

1 Dead ends in PageRank computations (20 points) [Wanzi, Sen, Jessica]

Let the matrix of the Web M be an n-by-n matrix, where n is the number of Web pages. The entry m_{ij} in row i and column j is 0, unless there is an arc from node (page) j to node i. In that case, the value of m_{ij} is $1/k$, where k is the number of arcs (links) out of node j. Notice that if node j has $k > 0$ arcs out, then column j has k values of $1/k$ and the rest 0’s. If node j is a dead end (i.e., it has zero arcs out), then column j is all 0’s.

Let $r = [r_1, r_2, \ldots, r_n]^T$ be (an estimate of) the PageRank vector; that is, r_i is the estimate of the PageRank of node i. Define $w(r)$ to be the sum of the components of r; that is $w(r) = \sum_{i=1}^{n} r_i$.

In one iteration of the PageRank algorithm, we compute the next estimate r' of the PageRank as: $r' = Mr$. Specifically, for each i we compute $r'_i = \sum_{j=1}^{n} M_{ij} r_j$.
(a) [6pts]

Suppose the Web has no dead ends. Prove that $w(r') = w(r)$.

(b) [7pts]

Suppose there are still no dead ends, but we use a teleportation probability of $1 - \beta$, where $0 < \beta < 1$. The expression for the next estimate of r_i becomes $r'_i = \beta \sum_{j=1}^{n} M_{ij} r_j + (1 - \beta)/n$. Under what circumstances will $w(r') = w(r)$? Prove your conclusion.

(c) [7pts]

Now, let us assume a teleportation probability of $1 - \beta$ in addition to the fact that there are one or more dead ends. Call a node “dead” if it is a dead end and “live” if not. Assume $w(r) = 1$. At each iteration, each live node j distributes $(1 - \beta)r_j/n$ PageRank to each of the other nodes, and each dead node j distributes r_j/n PageRank to each of the other nodes.

Write the equation for r'_i in terms of β, M, r, n, and D (where D is the set of dead nodes). Then, prove that $w(r')$ is also 1.

What to submit

(i) Proof [1(a)]

(ii) Condition for $w(r') = w(r)$ and Proof [1(b)]

(iii) Equation for r'_i and Proof [1(c)]

2 Implementing PageRank and HITS (25 points) [Yu-tian, Kush, Chang]

In this problem, you will learn how to implement the PageRank and HITS algorithms in Spark. You will be experimenting with a small randomly generated graph (assume graph has no dead-ends) provided at http://snap.stanford.edu/class/cs246-data/graph-full.txt.

It has $n = 1000$ nodes (numbered $1, 2, \ldots, 1000$), and $m = 8192$ edges, 1000 of which form a directed cycle (through all the nodes) which ensures that the graph is connected. It is easy to see that the existence of such a cycle ensures that there are no dead ends in the graph. There may be multiple directed edges between a pair of nodes, and your solution should treat them as the same edge. The first column in graph-full.txt refers to the source node, and the second column refers to the destination node.
(a) PageRank Implementation [12 points]

Assume the directed graph $G = (V, E)$ has n nodes (numbered 1, 2, ..., n) and m edges, all nodes have positive out-degree, and $M = [M_{ji}]_{n \times n}$ is a an $n \times n$ matrix as defined in class such that for any $i, j \in [1, n]$:

$$M_{ji} = \begin{cases} \frac{1}{\text{deg}(i)} & \text{if } (i \rightarrow j) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Here, $\text{deg}(i)$ is the number of outgoing edges of node i in G. If there are multiple edges in the same direction between two nodes, treat them as a single edge. By the definition of PageRank, assuming $1 - \beta$ to be the teleport probability, and denoting the PageRank vector by the column vector r, we have the following equation:

$$r = \frac{1 - \beta}{n} \mathbf{1} + \beta Mr,$$

(1)

where $\mathbf{1}$ is the $n \times 1$ vector with all entries equal to 1.

Based on this equation, the iterative procedure to compute PageRank works as follows:

1. Initialize: $r^{(0)} = \frac{1}{n} \mathbf{1}$

2. For i from 1 to k, iterate: $r^{(i)} = \frac{1 - \beta}{n} \mathbf{1} + \beta M r^{(i-1)}$

Run the aforementioned iterative process in Spark for 40 iterations (assuming $\beta = 0.8$) and obtain the PageRank vector r. In particular, you don’t have to implement the blocking algorithm from lecture. The matrix M can be large and should be processed as an RDD in your solution. Compute the following:

- List the top 5 node ids with the highest PageRank scores.
- List the bottom 5 node ids with the lowest PageRank scores.

For a sanity check, we have provided a smaller dataset http://snap.stanford.edu/class/cs246-data/graph-small.txt. In that dataset, the top node has id 53 with value 0.036.

(b) HITS Implementation [13 points]

Assume the directed graph $G = (V, E)$ has n nodes (numbered 1, 2, ..., n) and m edges, all nodes have non-negative out-degree, and $L = [L_{ij}]_{n \times n}$ is a an $n \times n$ matrix referred to as the link matrix such that for any $i, j \in [1, n]$:

$$L_{ij} = \begin{cases} 1 & \text{if } (i \rightarrow j) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Given the link matrix L and some scaling factors λ, μ, the hubbiness vector h and the authority vector a can be expressed using the equations:

$$h = \lambda L a, \quad a = \mu L^T h$$

(2)

where 1 is the $n \times 1$ vector with all entries equal to 1.

Based on this equation, the iterative method to compute h and a is as follows:

1. Initialize h with a column vector (of size $n \times 1$) of all 1’s.
2. Compute $a = L^T h$ and scale so that the largest value in the vector a has value 1.
3. Compute $h = La$ and scale so that the largest value in the vector h has value 1.
4. Go to step 2.

Repeat the iterative process for 40 iterations, assume that $\lambda = 1, \mu = 1$ and then obtain the hubbiness and authority scores of all the nodes (pages). The link matrix L can be large and should be processed as an RDD. Compute the following:

- List the 5 node ids with the highest hubbiness score.
- List the 5 node ids with the lowest hubbiness score.
- List the 5 node ids with the highest authority score.
- List the 5 node ids with the lowest authority score.

For a sanity check, you should confirm that `graph-small.txt` has highest hubbiness node id 59 with value 1 and highest authority node id 66 with value 1.

What to submit

(i) List 5 node ids with the highest and least PageRank scores [2(a)]
(ii) List 5 node ids with the highest and least hubbiness and authority scores [2(b)]
(iii) Upload all the code to the snap submission site [2(a) & 2(b)]
3 Clique-Based Communities (25 points) [Praty, Dylan, Hiroto]

Imagine an undirected graph G with nodes 2, 3, 4, ..., 1000000. (Note that there is no node 1.) There is an edge between nodes i and j if and only if i and j have a common factor other than 1. Put another way, the only edges that are missing are those between nodes that are relatively prime; e.g., there is no edge between 15 and 56.

We want to find communities by starting with a clique (not a bi-clique) and growing it by adding nodes. However, when we grow a clique, we want to keep the density of edges at 1; i.e., the set of nodes remains a clique at all times. A maximal clique is a clique for which it is impossible to add a node and still retain the property of being a clique; i.e., a clique C is maximal if every node not in C is missing an edge to at least one member of C.

(a) [5 points]

Prove that if i is any integer greater than 1, then the set C_i of nodes of G that are divisible by i is a clique.

(b) [10 points]

Under what circumstances is C_i a maximal clique? Prove that your conditions are both necessary and sufficient. (Trivial conditions, like “C_i is a maximal clique if and only if C_i is a maximal clique,” will receive no credit.)

(c) [10 points]

Prove that C_2 is the unique largest clique. That is, it has more elements than any other clique.

What to submit

(i) Proof that the specified nodes are a clique.

(ii) Necessary and sufficient conditions for C_i to be a maximal clique, with proof.

(iii) Proof that C_2 is the unique largest clique.
4 Dense Communities in Networks (20 points) [Sanyam, Qijia, Heather]

In this problem, we study the problem of finding dense communities in networks.

Definitions: Assume $G = (V, E)$ is an undirected graph (e.g., representing a social network).

- For any subset $S \subseteq V$, we let the induced edge set (denoted by $E[S]$) to be the set of edges both of whose endpoints belong to S.
- For any $v \in S$, we let $\text{deg}_S(v) = |\{u \in S | (u, v) \in E\}|$.
- Then, we define the density of S to be:
 $$\rho(S) = \frac{|E[S]|}{|S|}.$$
- Finally, the maximum density of the graph G is the density of the densest induced subgraph of G, defined as:
 $$\rho^*(G) = \max_{S \subseteq V} \{\rho(S)\}.$$

Goal. Our goal is to find an induced subgraph of G whose density is not much smaller than $\rho^*(G)$. Such a set is very densely connected, and hence may indicate a community in the network represented by G. Also, since the graphs of interest are usually very large in practice, we would like the algorithm to be highly scalable. We consider the following algorithm:

Require: $G = (V, E)$ and $\epsilon > 0$

$\tilde{S}, S \leftarrow V$

while $S \neq \emptyset$ do

\[A(S) := \{i \in S | \text{deg}_S(i) \leq 2(1 + \epsilon)\rho(S)\}\]

$S \leftarrow S \setminus A(S)$

if $\rho(S) > \rho(\tilde{S})$ then

$\tilde{S} \leftarrow S$

end if

end while

return \tilde{S}

The basic idea in the algorithm is that the nodes with low degrees do not contribute much to the density of a dense subgraph, hence they can be removed without significantly influencing the density.

We analyze the quality and performance of this algorithm. We start with analyzing its performance.
(a) [10 points]

We show through the following steps that the algorithm terminates in a logarithmic number of steps.

i. Prove that at any iteration of the algorithm, $|A(S)| \geq \frac{\epsilon}{1+\epsilon}|S|$.

ii. Prove that the algorithm terminates in $O(\log_{1+\epsilon}(n))$ iterations, where n is the initial number of nodes.

(b) [10 points]

We show through the following steps that the density of the set returned by the algorithm is at most a factor $2(1+\epsilon)$ smaller than $\rho^*(G)$.

i. Assume S^* is the densest subgraph of G. Prove that for any $v \in S^*$, we have: $\text{deg}_{S^*}(v) \geq \rho^*(G)$.

ii. Consider the first iteration of the while loop in which there exists a node $v \in S^* \cap A(S)$. Prove that $2(1+\epsilon)\rho(S) \geq \rho^*(G)$.

iii. Conclude that $\rho(\tilde{S}) \geq \frac{1}{2(1+\epsilon)}\rho^*(G)$.

What to submit

(a)
i. Proof of $|A(S)| \geq \frac{\epsilon}{1+\epsilon}|S|$.
 ii. Proof of number of iterations for algorithm to terminate.

(b)
i. Proof of $\text{deg}_{S^*}(v) \geq \rho^*(G)$.
 ii. Proof of $2(1+\epsilon)\rho(S) \geq \rho^*(G)$.
 iii. Conclude that $\rho(\tilde{S}) \geq \frac{1}{2(1+\epsilon)}\rho^*(G)$.