Data contains value and knowledge
But to extract the knowledge data needs to be
- Stored (systems)
- Managed (databases)
- And ANALYZED ← this class

Data Mining ≈ Big Data ≈ Predictive Analytics ≈ Data Science
Data mining = extraction of actionable information from (usually) very large datasets, is the subject of extreme hype, fear, and interest

- It’s not all about machine learning
- But some of it is

- Emphasis in CS246 on algorithms that **scale**
 - Parallelization often essential
Data Mining Methods

- **Descriptive methods**
 - Find human-interpretable patterns that describe the data
 - *Example:* Clustering

- **Predictive methods**
 - Use some variables to predict unknown or future values of other variables
 - *Example:* Recommender systems
This Class: CS246

- This combines best of machine learning, statistics, artificial intelligence, databases but more stress on:
 - **Scalability** (big data)
 - **Algorithms**
 - **Computing architectures**
 - Automation for handling large data
What will we learn?

- **We will learn to mine different types of data:**
 - Data is high dimensional
 - Data is a graph
 - Data is infinite/never-ending
 - Data is labeled

- **We will learn to use different models of computation:**
 - MapReduce
 - Streams and online algorithms
 - Single machine in-memory
We will learn to solve real-world problems:
- Recommender systems
- Market Basket Analysis
- Spam detection
- Duplicate document detection

We will learn various “tools”:
- Linear algebra (SVD, Rec. Sys., Communities)
- Optimization (stochastic gradient descent)
- Dynamic programming (frequent itemsets)
- Hashing (LSH, Bloom filters)
How the Class Fits Together

High dim. data
- Locality sensitive hashing
- Clustering
- Dimensionality reduction

Graph data
- PageRank, SimRank
- Network Analysis
- Spam Detection

Infinite data
- Filtering data streams
- Web advertising
- Queries on streams

Machine learning
- SVM
- Decision Trees
- Perceptron, kNN

Apps
- Recommender systems
- Association Rules
- Duplicate document detection
How do you want that data?
Course Logistics
Office hours:

- See course website for TA office hours
 - We start Office Hours next week
- Jure: Tuesdays 9-10am, Gates 418
- For SCPD students we will use Google Hangout
Resources

- **Course website:** http://cs246.stanford.edu
 - Lecture slides (at least 30min before the lecture)
 - Homeworks, solutions, readings

- **Class textbook:** *Mining of Massive Datasets* by A. Rajaraman, J. Ullman, and J. Leskovec
 - Sold by Cambridge Uni. Press but available for free at http://mmds.org

- **MOOC:** www.youtube.com /channel/UC_Oao2FYkLAULUVkBFze4jg/videos
Special Tutorials

- Spark tutorial and help session:
 - Thursday, January 11, from 4:30-5:50 pm in Skilling Auditorium

- Review of linear algebra and proof techniques
 - Tuesday, January 16 from 4:30-5:50 pm in Skilling Auditorium

- Review of probability:
 - Thursday, January 18 from 4:30-5:50 pm in Skilling Auditorium
Logistics: Communication

- **Piazza Q&A website:**
 - https://piazza.com/class - winter2018/cs246
 - Use Piazza for all questions and public communication
 - Search the forum before asking a question
 - Please tag your posts and please no one-liners

- **For e-mailing course staff always use:**
 - cs246-win1718-staff@lists.stanford.edu

- **We will post course announcements to Piazza (make sure you check it regularly)**

Auditors are welcome to sit-in & audit the class
Work for the Course: Homeworks

- **4 longer homeworks: 40%**
 - Four major assignments, involving programming, proofs, algorithm development.
 - “Warmup” assignment, called “HW0,” to introduce everyone to Spark has just been posted.
 - Assignments take lots of time (+20h). **Start early!!**

- **How to submit?**

 - **Homework write-up:**
 - Submit via Gradescope.com
 - Course code: MKYXN5

 - **Everyone uploads code:**
 - Put all the code for 1 question into 1 file and submit at: http://snap.stanford.edu/submit/
Homework Calendar

- Homework schedule:

<table>
<thead>
<tr>
<th>Date (23:59 PT)</th>
<th>Out</th>
<th>In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Today</td>
<td>HW0</td>
<td></td>
</tr>
<tr>
<td>01/11, Thu</td>
<td>HW1</td>
<td></td>
</tr>
<tr>
<td>01/25, Thu</td>
<td>HW2</td>
<td>HW0, HW1</td>
</tr>
<tr>
<td>02/08, Thu</td>
<td>HW3</td>
<td>HW2</td>
</tr>
<tr>
<td>02/22, Thu</td>
<td>HW4</td>
<td>HW3</td>
</tr>
<tr>
<td>03/08, Thu</td>
<td></td>
<td>HW4</td>
</tr>
</tbody>
</table>

- Two late periods for HWs for the quarter:
 - Late period expires on the following Tuesday 23:59 PT
 - Can use max 1 late period per HW
Work for the Course: Gradiance

- **Short weekly Gradiance quizzes: 20%**
 - Quizzes are posted every **Tuesday**
 - Due 9 days later on **Thursday 23:59 PT. No late days!**
 - First quiz has already been posted
 - To register on Gradiance please use **SUNetID** or `<legal first name>_<legal last name>` for username
 - We have to be able to match your Gradiance ID and SUNetId
 - Sign up at www.gradiance.com/services and enter class **79D9D7F3**

- As many submissions as you like, your score is based on the **most recent** submission
- After the due date, you can see the solutions to all problems by looking at one of your submissions, so you **must** try at least once
You should work each of the implied problems before answering the multiple-choice questions.

That way, if you have to repeat the work to get 100%, you will have available what you need for the questions you have solved correctly, and the process can go quickly.

Note: There is a 10-minute delay between submissions, to protect against people who randomly fire off guesses.
Final exam: 40%
- Tuesday, March 20 3:30pm-6:30pm
- There is no alternative final, but if you truly have a conflict, we can arrange for you to take the exam immediately after the regular final

Extra credit: Up to 1% of your grade
- For participating in Piazza discussions
 - Especially valuable are answers to questions posed by other students
- Reporting bugs in course materials
Prerequisites

- **Programming**: Python or Java
- **Basic Algorithms**: CS161 is surely sufficient
- **Probability**: e.g., CS109 or Stat116
 - There will be a review session and a review doc is linked from the class home page
- **Linear algebra**:
 - Another review doc + review session is available
- **Multivariable calculus**
- **Database systems** (SQL, relational algebra):
 - CS145 is sufficient by not necessary
Each of the topics listed is important for a small part of the course:

- If you are missing an item of background, you could consider just-in-time learning of the needed material.

The exception is programming:

- To do well in this course, you really need to be comfortable with writing code in Python or Java.
We’ll follow the standard CS Dept. approach: You can get help, but you **MUST** acknowledge the help on the work you hand in.

Failure to acknowledge your sources is a *violation of the Honor Code*.

We use MOSS to check the originality of your code.
Honor Code – (2)

- You can talk to others about the algorithm(s) to be used to solve a homework problem;
 - As long as you then mention their name(s) on the work you submit
- You should not use code of others or be looking at code of others when you write your own:
 - You can talk to people but have to write your own solution/code
 - If you fail to mention your sources, MOSS will catch you, and you will be charged with an HC violation
CS246H covers practical aspects of Spark and other distributed computing architectures

- HDFS, Combiners, Partitioners, Hive, Pig, Hbase, ...
- 1 unit course, optional homeworks

CS246H runs (somewhat) parallel to CS246

- CS246 discusses theory and algorithms
- CS246H tells you how to implement them

Instructor: Daniel Templeton (Cloudera)

- CS246H lectures are recorded (available via SCPD)
What’s after the class

- **CS341**: Project in Data Mining (Spring 2018)
 - Research project on big data
 - Groups of 3 students
 - We provide interesting data, computing resources (Amazon EC2) and mentoring

- My group has RA positions open:
Final Thoughts

- **CS246 is fast paced!**
 - Requires programming maturity
 - Strong math skills
 - SCPD students tend to be rusty on math/theory

- **Course time commitment:**
 - Homeworks take +20h
 - Gradiance quizzes take about 1-2h

- Form study groups

- It’s going to be **fun** and **hard** work. 😊
4 To-do items

- 4 to-do items for you:
 - Register to Piazza
 - Register to Gradescope
 - Register to Gradiance and complete the first quiz
 - Use your SUNet ID to register! (so we can match grading records)
 - Complete the first quiz (it is already posted)
 - Complete HW0
 - HW0 should take you about 1-2 hours to complete
 (Note this is a “toy” homework to get you started. Real homeworks will be much more challenging and longer)

- Additional details/instructions at http://cs246.stanford.edu
Distributed Computing for Data Mining
Large-scale Computing

- Large-scale computing for data mining problems on commodity hardware

- Challenges:
 - How do you distribute computation?
 - How can we make it easy to write distributed programs?
 - Machines fail:
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to lose 1/day
 - With 1M machines 1,000 machines fail every day!
An Idea and a Solution

- **Issue:**
 Copying data over a network takes time

- **Idea:**
 - Bring computation to data
 - Store files multiple times for reliability

- **Spark/Hadoop** address these problems
 - **Storage Infrastructure** – File system
 - Google: GFS. Hadoop: HDFS
 - **Programming model**
 - MapReduce
 - Spark
Problem:
 - If nodes fail, how to store data persistently?

Answer:
 - **Distributed File System**
 - Provides global file namespace

Typical usage pattern:
 - Huge files (100s of GB to TB)
 - Data is rarely updated in place
 - Reads and appends are common
Distributed File System

- **Chunk servers**
 - File is split into contiguous chunks
 - Typically each chunk is 16-64MB
 - Each chunk replicated (usually 2x or 3x)
 - Try to keep replicas in different racks

- **Master node**
 - a.k.a. Name Node in Hadoop’s HDFS
 - Stores metadata about where files are stored
 - Might be replicated

- **Client library for file access**
 - Talks to master to find chunk servers
 - Connects directly to chunk servers to access data
Reliable distributed file system

Data kept in “chunks” spread across machines

Each chunk **replicated** on different machines

- Seamless recovery from disk or machine failure

![Chunk server diagram]

Bring computation directly to the data!

Chunk servers also serve as compute servers
MapReduce is a style of programming designed for:

1. Easy parallel programming
2. Invisible management of hardware and software failures
3. Easy management of very-large-scale data

It has several implementations, including Hadoop, Spark (used in this class), Flink, and the original Google implementation just called “MapReduce”
MapReduce: Overview

3 steps of MapReduce

- **Map:**
 - Apply a user-written *Map function* to each input element
 - *Mapper* applies the Map function to a single element
 - Many mappers grouped in a *Map task* (the unit of parallelism)
 - The output of the Map function is a set of 0, 1, or more *key-value pairs*.

- **Group by key:** Sort and shuffle
 - System sorts all the key-value pairs by key, and outputs key-(list of values) pairs

- **Reduce:**
 - User-written *Reduce function* is applied to each key-(list of values)

Outline stays the same, **Map and Reduce** change to fit the problem
Map-Reduce: A diagram

MAP:
Read input and produces a set of key-value pairs

Group by key:
Collect all pairs with the same key (Hash merge, Shuffle, Sort, Partition)

Reduce:
Collect all values belonging to the key and output
Map-Reduce: In Parallel

All phases are distributed with many tasks doing the work
MapReduce Pattern

Input → Mappers → key-value pairs → Reducers → Output

Example MapReduce task:

- We have a huge text document
- Count the number of times each distinct word appears in the file

Many applications of this:

- Analyze web server logs to find popular URLs
- Statistical machine translation:
 - Need to count number of times every 5-word sequence occurs in a large corpus of documents
The crew of the space shuttle Endeavor recently returned to Earth as ambassadors, harbingers of a new era of space exploration. Scientists at NASA are saying that the recent assembly of the Dextre bot is the first step in a long-term space-based man/machine partnership. "The work we're doing now -- the robotics we're doing -- is what we're going to need..."
map(key, value):
 // key: document name; value: text of the document
 for each word w in value:
 emit(w, 1)

reduce(key, values):
 // key: a word; value: an iterator over counts
 result = 0
 for each count v in values:
 result += v
 emit(key, result)
MapReduce environment takes care of:

- **Partitioning** the input data
- **Scheduling** the program’s execution across a set of machines
- Performing the **group by key** step
 - In practice this is the bottleneck
- Handling machine **failures**
- Managing required inter-machine **communication**
Dealing with Failures

- **Map worker failure**
 - Map tasks completed or in-progress at worker are reset to idle and rescheduled
 - Reduce workers are notified when map task is rescheduled on another worker

- **Reduce worker failure**
 - Only in-progress tasks are reset to idle and the reduce task is restarted
Spark
Problems with MapReduce

- **Two major limitations of MapReduce:**
 - Difficultly of programming directly in MR
 - Many problems aren’t easily described as map-reduce
 - Performance bottlenecks, or batch not fitting the use cases
 - Persistence to disk typically slower than in-memory work

- **In short, MR doesn’t compose well for large applications**
 - Many times one needs to chain multiple map-reduce steps
Data-Flow Systems

- MapReduce uses two “ranks” of tasks: One for Map the second for Reduce
 - Data flows from the first rank to the second

- Data-Flow Systems generalize this in two ways:
 1. Allow any number of tasks/ranks
 2. Allow functions other than Map and Reduce
 - As long as data flow is in one direction only, we can have the blocking property and allow recovery of tasks rather than whole jobs
Spark: Most Popular Data-Flow System

- Expressive computing system, not limited to the map-reduce model

- Additions to MapReduce model:
 - Fast data sharing
 - Avoids saving intermediate results to disk
 - Caches data for repetitive queries (e.g. for machine learning)
 - General execution graphs (DAGs)
 - Richer functions than just map and reduce

- Compatible with Hadoop
Key concept *Resilient Distributed Dataset* (RDD)

- Partitioned collection of records
 - Generalizes (key-value) pairs
- Spread across the cluster, Read-only
- Caching dataset in memory
 - Different storage levels available
 - Fallback to disk possible
- RDDs can be created from Hadoop, or by transforming other RDDs (you can stack RDDs)
- RDDs are best suited for applications that apply the same operation to all elements of a dataset
Transformations build RDDs through deterministic operations on other RDDs:
- Transformations include `map`, `filter`, `join`, `union`, `intersection`, `distinct`
- **Lazy evaluation**: Nothing computed until an action requires it

Actions to return value or export data
- Actions include `count`, `collect`, `reduce`, `save`
- Actions can be applied to RDDs; actions force calculations and return values
Task Scheduler: General DAGs

- Supports general task graphs
- Pipelines functions where possible
- Cache-aware data reuse & locality
- Partitioning-aware to avoid shuffles
Problems Suited for MapReduce
Example: Host size

- Suppose we have a large web corpus
- Look at the metadata file
 - Lines of the form: (URL, size, date, ...)
- For each host, find the total number of bytes
 - That is, the sum of the page sizes for all URLs from that particular host

- Other examples:
 - Link analysis and graph processing
 - Machine Learning algorithms
Example: Language Model

- **Statistical machine translation:**
 - Need to count number of times every 5-word sequence occurs in a large corpus of documents

- **Very easy with MapReduce:**
 - **Map:**
 - Extract (5-word sequence, count) from document
 - **Reduce:**
 - Combine the counts
Example: Join By Map-Reduce

- Compute the natural join \(R(A,B) \bowtie S(B,C) \)
- \(R \) and \(S \) are each stored in files
- Tuples are pairs \((a,b)\) or \((b,c)\)

\[
\begin{array}{|c|c|}
\hline
A & B \\
\hline
a_1 & b_1 \\
a_2 & b_1 \\
a_3 & b_2 \\
a_4 & b_3 \\
\hline
\end{array}
\bowtie
\begin{array}{|c|c|}
\hline
B & C \\
\hline
b_2 & c_1 \\
b_2 & c_2 \\
b_3 & c_3 \\
\hline
\end{array}
\begin{array}{|c|c|}
\hline
A & C \\
\hline
a_3 & c_1 \\
a_3 & c_2 \\
a_4 & c_3 \\
\hline
\end{array}
\]
Map-Reduce Join

- Use a hash function h from B-values to $1...k$
- A Map process turns:
 - Each input tuple $R(a,b)$ into key-value pair $(b,(a,R))$
 - Each input tuple $S(b,c)$ into $(b,(c,S))$

- Map processes send each key-value pair with key b to Reduce process $h(b)$
 - Hadoop does this automatically; just tell it what k is.
- Each Reduce process matches all the pairs $(b,(a,R))$ with all $(b,(c,S))$ and outputs (a,b,c).
Problems NOT suitable for MapReduce

- **MapReduce is great for:**
 - Problems that require sequential data access
 - Large batch jobs (not interactive, real-time)

- **MapReduce is inefficient for problems where random (or irregular) access to data is required:**
 - Graphs
 - Interdependent data
 - Machine learning
 - Comparisons of many pairs of items
In MapReduce we quantify the cost of an algorithm using

1. *Communication cost* = total I/O of all processes
2. *Elapsed communication cost* = max of I/O along any path
3. *(Elapsed) computation cost* analogous, but count only running time of processes

Note that here the big-O notation is not the most useful (adding more machines is always an option)
Example: Cost Measures

- For a map-reduce algorithm:
 - **Communication cost** = input file size + 2 × (sum of the sizes of all files passed from Map processes to Reduce processes) + the sum of the output sizes of the Reduce processes.
 - **Elapsed communication cost** is the sum of the largest input + output for any map process, plus the same for any reduce process.
Either the I/O (communication) or processing (computation) cost dominates
 - Ignore one or the other

Total cost tells what you pay in rent from your friendly neighborhood cloud

Elapsed cost is wall-clock time using parallelism
Cost of Map-Reduce Join

- **Total communication cost**
 \[= O(|R| + |S| + |R \bowtie S|) \]
- **Elapsed communication cost**
 \[= O(s) \]
 - We’re going to pick \(k \) and the number of Map processes so that the I/O limit \(s \) is respected
 - We put a limit \(s \) on the amount of input or output that any one process can have. \(s \) could be:
 - What fits in main memory
 - What fits on local disk
 - With proper indexes, computation cost is linear in the input + output size
 - So computation cost is like comm. cost
CS246: Mining massive datasets

Grab a handout at the back of the room