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Final Exam on Gradescope; open notes
 Mar 11 (Mon) 10AM PT – Mar 12 (Tue) 10AM
 3hr in 24hr window
We will be releasing HW1 today
 It is due in 2 weeks (1/25 at 11:59 PM)
 Please start early. The homework is long
▪ Requires proving theorems as well as coding

We will also be releasing Colab 0 and Colab 1
 They are due in 1 week (1/18 at 11:59 PM)
Send OAE letters to course email by 4/12
 cs246-win2324-staff@lists.stanford.edu
All HW/Colab links will be posted on Ed
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Spark OH
 Saturday, 01/13, 9:30 AM - 10:30 AM PT
 Zoom: 

https://stanford.zoom.us/j/93824616839?pwd=Ky9
MQjU5cmZjMDg1ZkEzbzF0SGlZUT09

Linear Algebra Recitation
 Thursday, 01/18, 5:30 PM - 7:30 PM PT
 Room: 200-305
 Zoom: 

https://stanford.zoom.us/j/98848225994?pwd=Wn
ZQc1BiVXFQdWxVRUZGdVZ5dDF6Zz09

Proofs and Probability Recitation
 Friday, 01/19, from 2:30 PM - 4:30 PM PT
 Room: Hewlett 201
 Zoom: TBD (we will try to livestream the session)1/11/2024 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 3

https://stanford.zoom.us/j/93824616839?pwd=Ky9MQjU5cmZjMDg1ZkEzbzF0SGlZUT09
https://stanford.zoom.us/j/93824616839?pwd=Ky9MQjU5cmZjMDg1ZkEzbzF0SGlZUT09
https://stanford.zoom.us/j/98848225994?pwd=WnZQc1BiVXFQdWxVRUZGdVZ5dDF6Zz09
https://stanford.zoom.us/j/98848225994?pwd=WnZQc1BiVXFQdWxVRUZGdVZ5dDF6Zz09


Supermarket shelf management –
Market-basket model:

 Goal: Identify items that are bought together by 
sufficiently many customers

 Approach: Process the sales data collected with 
barcode scanners to find dependencies among 
items

 A classic rule:

▪ If someone buys diaper and milk, then he/she is 
likely to buy beer

▪ Don’t be surprised if you find six-packs next to diapers!
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 A large set of items

▪ e.g., things sold in a 
supermarket

 A large set of baskets

▪ Each basket is a 
small subset of items

▪ e.g., the things one 
customer buys on one day

 Discover association rules:
People who bought {x,y,z} tend to buy {v,w}
▪ Example application: Amazon

1/11/2024 Jure Leskovec & Mina Ghashami, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 5

Rules Discovered:

    {Milk} --> {Coke}
    {Diaper, Milk} --> {Beer}

Basket Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Input:

Output:



 A general many-to-many mapping 
(association) between two kinds of things

▪ But we are interested in connections among 
“items”, not “baskets”

 Items and baskets are abstract:

▪ For example:

▪ Items/baskets can be products/shopping basket

▪ Items/baskets can be words/documents

▪ Items/baskets can be base-pairs/genes

▪ Items/baskets can be drugs/patients
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 Items = products; Baskets = sets of products 
someone bought in one trip to the store

 Real market baskets: Chain stores keep TBs of 
data about what customers buy together

▪ Tells how typical customers navigate stores, lets 
them position tempting items together:

▪ Apocryphal story of “diapers and beer” discovery

▪ Used to position potato chips between diapers and beer to 
enhance sales of potato chips

 Amazon’s ‘people who bought X also bought Y’
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 Baskets = sentences; Items = documents in 
which those sentences appear

▪ Items that appear together too often could 
represent plagiarism

▪ Notice items do not have to be “in” baskets

 Baskets = patients; Items = drugs & side-effects

▪ Has been used to detect combinations 
of drugs that result in particular side-effects

▪ But requires extension: Absence of an item 
needs to be observed as well as presence
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First: Define
Frequent itemsets

Association rules:

Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets
Finding frequent pairs

A-Priori algorithm

PCY algorithm
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 Simplest question: Find sets of items that 
appear together “frequently” in baskets

 Support for itemset I: Number of baskets 
containing all items in I
▪ (Often expressed as a fraction 

of the total number of baskets)

 Given a support threshold s, 
then sets of items that appear 
in at least s baskets are called 
frequent itemsets
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TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Support of 

{Beer, Bread} = 2



 Items = {milk, coke, pepsi, beer, juice}
 Support threshold = 3 baskets

B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4 = {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Frequent itemsets: {m}, {c}, {b}, {j},
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, {b,c} , {c,j}.{m,b}
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 Define: Association Rules:
If-then rules about the contents of baskets

 {i1, i2,…,ik} → j means: “if a basket contains 
all of i1,…,ik then it is likely to contain j”

 In practice there are many rules, want to find 
significant/interesting ones!

 Confidence of association rule is the 
probability of j given I = {i1,…,ik}

)support(

)support(
)conf(

I

jI
jI


=→
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conf 𝐼→𝑗 =

= 𝑃 𝑗 𝐼 =
𝑃 𝐼, 𝑗

𝑃(𝐼)



 Not all high-confidence rules are interesting

▪ The rule X → milk may have high confidence for many 
itemsets X, because milk is just purchased very often 
(independent of X)

 Interest of an association rule I → j: 
abs. difference between its confidence and 
the fraction of baskets that contain j

▪ Interesting rules: those with high interest values 
(usually above 0.5)

▪ Why absolute value? Want to capture both positive 
and negative associations between itemsets and items
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𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 I → 𝑗 = 𝑐𝑜𝑛𝑓 𝐼 → 𝑗 − P 𝑗 =  | 𝑃 𝑗 𝐼 − 𝑃(𝑗)|



B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, b} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}

 Association rule: {m, b} →c
▪ Support = 2

▪ Confidence = 2/4 = 0.5

▪ Interest = |0.5 – 5/8| = 1/8
▪ Item c appears in 5/8 of the baskets

▪ The rule is not very interesting!
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 Problem: Find all association rules with 
support ≥s and confidence ≥c

▪ Note: Support of an association rule is the support of 
the entire set of items in the rule (left side + right 
side)

 Hard part: Finding the frequent itemsets!

▪ If {i1, i2,…, ik} → {j} has high support and 
confidence, then both {i1, i2,…, ik} and
{i1, i2,…,ik, j} will be “frequent”
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)support(

)support(
)conf(

I

jI
jI


=→



 Step 1: Find all frequent itemsets I

▪ (we will explain this next)

 Step 2: Rule generation

▪ For every subset A of I,  generate a rule A → I \ A

▪ Since I is frequent, A is also frequent

▪ Variant 1: Single pass to compute the rule confidence
▪ confidence(A,B→C,D) = support(A,B,C,D) / support(A,B)

▪ Variant 2:
▪ Observation: If A,B,C→D is below confidence, then so is A,B→C,D

▪ Can generate “bigger” rules from smaller ones! 

▪ Output the rules above the confidence threshold
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B1 = {m, c, b} B2 = {m, p, j}

B3 = {m, c, b, n} B4= {c, j}

B5 = {m, p, b} B6 = {m, c, b, j}

B7 = {c, b, j} B8 = {b, c}
 Support threshold s = 3, confidence c = 0.75
 Step 1) Find frequent itemsets:
▪ {b,m}  {b,c}  {c,m}  {c,j}  {m,c,b}

 Step 2) Generate rules:
▪ b→m: c=4/6      b→c: c=5/6        b,c→m: c=3/5

▪ m→b: c=4/5 …                   b,m→c: c=3/4
b→c,m: c=3/6
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 To reduce the number of rules, we can 
post-process them and only output:

▪ Maximal frequent itemsets: 
No immediate superset is frequent

▪ Gives more pruning

or

▪ Closed itemsets:
No immediate superset has the same support (> 0)

▪ Stores not only frequent information, but exact 
supports/counts
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Support Maximal(s=3) Closed
A 4 No No
B 5 No Yes
C 3 No No
AB 4 Yes Yes
AC 2 No No
BC 3 Yes Yes
ABC 2 No Yes
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Frequent, but

superset BC

also frequent.

Frequent, and

its only superset,

ABC, not freq.

Superset BC

has same support.

Its only super-

set, ABC, has

smaller support.





 Back to finding frequent itemsets
 Typically, data is kept in flat files 

rather than in a database system:
▪ Stored on disk

▪ Stored basket-by-basket

▪ Baskets are small but we have 
many baskets and many items
▪ Expand baskets into pairs, triples, etc. 

as you read baskets

▪ Use k nested loops to generate all 
sets of size k
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Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Item

Etc.

Items are positive integers, 

and boundaries between 
baskets are –1.

Note: We want to find frequent itemsets. To find them, we have to 

count them. To count them, we have to enumerate them.
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 The true cost of mining disk-
resident data is usually the 
number of disk I/Os

 In practice, association-rule 
algorithms read the data in passes
– all baskets read in turn

 We measure the cost by the 
number of passes an algorithm 
makes over the data
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Items are positive integers, 

and boundaries between 
baskets are –1.
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 For many frequent-itemset algorithms, 
main-memory is the critical resource

▪ As we read baskets, we need to count 
something, e.g., occurrences of pairs of items

▪ The number of different things we can count 
is limited by main memory

▪ Swapping counts in/out of main-memory is a bad 
idea

▪ Q: Why?
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 The hardest problem often turns out to be 
finding the frequent pairs of items {i1, i2}

▪ Why? Freq. pairs are common, freq. triples are rare

▪ Why? Probability of being frequent drops exponentially 
with size; number of sets grows more slowly with size

 Let’s first concentrate on pairs, then extend to 
larger sets
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 The approach:

▪ We always need to “generate” all the itemsets

▪ But we would only like to count (keep track of) only 
those itemsets that in the end turn out to be frequent

 Scenario:

▪ Imagine we aim to identify frequent pairs

▪ We will need to enumerate all pairs of items 

▪ For every basket, enumerate all pairs of items in that basket

▪ But, rather than keeping a count for every pair, we 
hope to discard a lot of pairs and only keep track of 
the ones that will in the end turn out to be frequent
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 Naïve approach to finding frequent pairs
 Read file once, counting in main memory 

the occurrences of each pair:
▪ From each basket b of nb items, generate its 

nb(nb-1)/2 pairs by two nested loops

▪ A data structure then keeps count of every pair
 Fails if (#items)2 exceeds main memory
▪ Remember: #items can be 

100K (Wal-Mart) or 10B (Web pages)
▪ Suppose 105 items, counts are 4-byte integers

▪ Number of pairs of items: 105(105-1)/2  5*109

▪ Therefore, 2*1010 (20 gigabytes) of memory is needed
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Goal: Count the number of occurrences of 
each pair of items (i,j):

 Approach 1: Count all pairs using a matrix

 Approach 2: Keep a table of triples [i, j, c] = 
“the count of the pair of items {i, j} is c.”

▪ If integers and item ids are 4 bytes, we need 
approximately 12 bytes for pairs with count > 0

▪ Plus some additional overhead for the hashtable
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4 bytes per pair

Triangular Matrix Triples (item i, item j, count) 

12 bytes per
occurring pair

Item i

It
e

m
 j



 Approach 1: Triangular Matrix
▪ n = total number items
▪ Count pair of items {i, j} only if i<j
▪ Keep pair counts in lexicographic order:
▪ {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

▪ Pair {i, j} is at position: [n(n - 1) - (n - i)(n - i + 1)]/2 + (j - i)
▪ Total number of pairs n(n –1)/2; total bytes= O(n2)
▪ Triangular Matrix requires 4 bytes per pair

 Approach 2 uses 12 bytes per occurring pair 
(but only for pairs with count > 0)

 Approach 2 beats Approach 1 if less than 1/3 of 
possible pairs actually occur
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Item i

It
e
m

 j



 Approach 1: Triangular Matrix
▪ n = total number items
▪ Count pair of items {i, j} only if i<j
▪ Keep pair counts in lexicographic order:
▪ {1,2}, {1,3},…, {1,n}, {2,3}, {2,4},…,{2,n}, {3,4},…

▪ Pair {i, j} is at position: [n(n - 1) - (n - i)(n - i + 1)]/2 + (j - i)
▪ Total number of pairs n(n –1)/2; total bytes= O(n2)
▪ Triangular Matrix requires 4 bytes per pair

 Approach 2 uses 12 bytes per occurring pair 
(but only for pairs with count > 0)

 Approach 2 beats Approach 1 if less than 1/3 of 
possible pairs actually occur
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Problem is when we have too 
many items so all the pairs 

do not fit into memory.

Can we do better?



Key concepts:
• Monotonicity of “Frequent”
• Notion of Candidate Pairs
• Extension to Larger Itemsets



 A two-pass approach called 
A-Priori limits the need for 
main memory

 Key idea: monotonicity

▪ If a set of items I appears at 
least s times, so does every subset J of I

 Contrapositive for pairs:
If item i does not appear in s baskets, then no 
pair including i can appear in s baskets

 So, how does A-Priori find freq. pairs?
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 Pass 1: Read baskets and count in main memory 
the # of occurrences of each individual item
▪ Requires only memory proportional to #items

 Items that appear ≥ 𝒔 times are the frequent items

 Pass 2: Read baskets again and keep track of the 
count of only those pairs where both elements 
are frequent (from Pass 1)
▪ Requires memory (for counts) proportional to square of 

the number of frequent items (not the square of total # of 
items) 

▪ Plus a list of the frequent items (so you know what must 
be counted)
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Item counts

Pass 1 Pass 2

Frequent items
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M
a
in

 m
e
m

o
ry Counts of 

pairs of 

frequent items 

(candidate 

pairs)

Green box represents the amount of available main memory. Smaller boxes represent how the memory is used.



 You can use the 
triangular matrix 
method with n = number 
of frequent items
▪ May save space compared 

with storing triples
 Trick: re-number 

frequent items 1,2,… 
and keep a table relating 
new numbers to original 
item numbers
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Item counts

Pass 1 Pass 2

Counts of pairs 

of frequent 

items

Frequent 

items

Old

item

IDs

M
a
in

 m
e
m
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ry

Counts of 

pairs of 

frequent items
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 For each k, we construct two sets of
k-tuples (sets of size k):

▪ Ck = candidate k-tuples = those that might be 
frequent sets (support > s) based on information 
from the pass for k–1

▪ Lk = the set of truly frequent k-tuples
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C1 L1 C2 L2 C3
Filter Filter ConstructConstruct

All

items

All pairs

of items

from L1

Count

the pairs
To be

explained

Count

the items



 Hypothetical steps of the A-Priori algorithm

▪ C1 = { {b} {c} {j} {m} {n} {p} }

▪ Count the support of itemsets in C1

▪ Prune non-frequent. We get: L1 = { b, c, j, m }

▪ Generate C2 = { {b,c} {b,j} {b,m} {c,j} {c,m} {j,m} }

▪ Count the support of itemsets in C2

▪ Prune non-frequent. L2 = { {b,m} {b,c}  {c,m}  {c,j} }

▪ Generate C3 = { {b,c,m} {b,c,j} {b,m,j} {c,m,j} }

▪ Count the support of itemsets in C3

▪ Prune non-frequent. L3 = { {b,c,m} }
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** Note here we generate new candidates by 

generating Ck from Lk-1 and L1.
But one can be more careful with candidate 
generation. For example, in C3 we know {b,m,j} 

cannot be frequent since {m,j} is not frequent.

**



 One pass for each k (itemset size)
 Needs room in main memory to count 

each candidate k–tuple
 For typical market-basket data and reasonable 

support (e.g., 1%), k = 2 requires the most memory

 Many possible extensions:
▪ Association rules with intervals: 
▪ For example: Men over 65 have 2 cars

▪ Association rules when items are in a taxonomy
▪ Bread, Butter → FruitJam

▪ BakedGoods, MilkProduct → PreservedGoods

▪ Lower the support s as itemset gets bigger
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Key concepts:
• Improvement to A-Priori
• Exploits Empty Memory on First Pass
• Frequent Buckets



 Observation: 
In pass 1 of A-Priori, most memory is idle
▪ We store only individual item counts

▪ Can we use the idle memory to reduce 
memory required in pass 2?

 Pass 1 of PCY: In addition to item counts, 
maintain a hash table with as many 
buckets/elements as fit in memory 
▪ Keep a count for each bucket into which 

pairs of items are hashed
▪ For each bucket just keep the count, not the actual 

pairs that hash to the bucket!
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Note:

Bucket≠Basket



FOR (each basket) :

FOR (each item in the basket):

add 1 to item’s count;

FOR (each pair of items in the basket):

hash the pair to a bucket;

add 1 to the count for that bucket;

 Few things to note:

▪ Pairs of items need to be generated from the input 
file; they are not present in the file

▪ We are not just interested in the presence of a pair, 
but we need to see whether it is present at least s
(support) times
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New 

in 

PCY



 Observation: If a bucket contains a frequent pair, 
then the bucket is surely frequent

 However, even without any frequent pair, 
a bucket can still be frequent 
▪ So, we cannot use the hash to eliminate any 

member (pair) of a “frequent” bucket
 But, for a bucket with total count less than s, 

none of its pairs can be frequent ☺
▪ Pairs that hash to this bucket can be eliminated as 

candidates (even if the pair consists of 2 frequent items)

 Pass 2:
Only count pairs that hash to frequent buckets
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 Replace the buckets by a bit-vector:

▪ 1 means the bucket count exceeded the support s
(call it a frequent bucket); 0 means it did not

 4-byte integer counts are replaced by bits, 
so the bit-vector requires 1/32 of memory

 Also, decide which items are frequent 
and list them for the second pass
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 Count all pairs {i, j} that meet the 
conditions for being a candidate pair:

1. Both i and j are frequent items

2. The pair {i, j} hashes to a bucket whose bit in 
the bit vector is 1 (i.e., a frequent bucket)

 Both conditions are necessary for the 
pair to have a chance of being frequent
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Hash

table

Item counts

Bitmap

Pass 1 Pass 2

Frequent items
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 Buckets require a few bytes each:

▪ Note: we do not have to count past s

▪ #buckets is O(main-memory size)

 On second pass, a table of (item, item, count) 
triples is essential (we cannot use triangular 
matrix approach)

▪ Thus, hash table must eliminate approx. 2/3 
of the candidate pairs for PCY to beat A-Priori
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 The MMDS book covers several other extensions 
beyond the PCY idea: “Multistage” and 
“Multihash”

 For reading on your own, Sect. 6.4 of MMDS

 Recommended video (starting about 10:10): 
https://www.youtube.com/watch?v=AGAkNiQnbjY
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https://www.youtube.com/watch?v=AGAkNiQnbjY


Key concepts:
• Random Sampling Algorithm
• Savasere-Omiecinski-Navathe (SON) Algorithm
• Toivonen’s Algorithm



 A-Priori, PCY, etc., take k passes to find 
frequent itemsets of size k

 Can we use fewer passes?

 Use 2 or fewer passes for all sizes, 
but may miss some frequent itemsets

 3 different approaches:
▪ Random sampling:
▪ Do not sneer; “random sample” is often a cure for the 

problem of having too large a dataset.

▪ SON (Savasere, Omiecinski, and Navathe)

▪ Toivonen
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 Take a random sample of the market baskets

 Run a-priori or one of its improvements
in main memory:

▪ So we don’t pay for disk I/O each 
time we increase the size of itemsets

▪ Reduce support threshold 
proportionally 
to match the sample size

▪ Example: if your sample is 1/100 of the baskets, use  
s/100 as your support threshold instead of s.
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 To avoid false positives: Optionally, verify that 
the candidate pairs are truly frequent in the 
entire data set by a second pass

 But you don’t catch sets that are frequent in 
the whole data but not in the sample

▪ Smaller threshold, e.g., s/125, helps catch more 
truly frequent itemsets

▪ But requires more space

 SON algorithm tries to deal with this (next)
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 SON Algorithm: Repeatedly read small 
subsets of the baskets into main memory and 
run an in-memory algorithm to find all 
frequent itemsets

▪ Note: we are not sampling, but processing the 
entire file in memory-sized chunks

 An itemset becomes a candidate if it is found 
to be frequent in one or more subsets of the 
baskets.
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 On a second pass, count all the candidate 
itemsets and determine which are frequent in 
the entire set.

 Key “monotonicity” idea: An itemset cannot be 
frequent in the entire dataset unless 
it is frequent in at least one subset.

▪ Pigeonhole principle

 However, even with SON algorithm we still don’t 
know whether we found all frequent itemsets
▪ An itemset may be infrequent in all subsets but frequent overall

 Toivonen’s algorithm solves this (next)
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Pass 1:
 Start with a random sample, but lower the 

threshold slightly for the sample:
▪ Example: If the sample is 1% of the baskets, use 

s/125 as the support threshold rather than s/100
 Find frequent itemsets in the sample
 Add the negative border to the itemsets that 

are frequent in the sample:
▪ Negative border: An itemset is in the negative 

border if it is not frequent in the sample, but all its 
immediate subsets are
▪ Immediate subset = “delete exactly one element”
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 {A,B,C,D} is in the negative border if and only if:

1. It is not frequent in the sample, but

2. All of {A,B,C}, {B,C,D}, {A,C,D}, and {A,B,D} are.
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 Pass 1:
▪ Start with the random sample, but lower the threshold slightly 

for the subset
▪ To the itemsets that are frequent in the sample, add the 

negative border of these itemsets
 Pass 2:
▪ Count all candidate frequent itemsets from the first pass, and 

also count sets in their negative border

 If no itemset from the negative border turns out to be 
frequent, then we found all the frequent itemsets.
▪ What if we find that something in the negative border is 

frequent?
▪ We must start over again with another sample!
▪ Try to choose the support threshold so the probability of failure is low, 

while the number of itemsets checked on the second pass fits in main-
memory.
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…

tripletons

doubletons

singletons

Negative Border

Frequent Itemsets
from Sample

We broke through the
negative border.  How
far does the problem
        go?
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 If there is an itemset S that is frequent in full data, but not 
frequent in the sample, then the negative border contains 
at least one itemset that is frequent in the full data.

Proof by contradiction:
 Suppose not; i.e.;

1. There is an itemset S frequent in the full data but not 
frequent in the sample, and

2. Nothing in the negative border is frequent in the full data
 Let T be a smallest subset of S that is not frequent in the 

sample (but every subset of T is)
 T is frequent in the whole (S is frequent + monotonicity).
 But then T is in the negative border (contradiction)
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