We will be releasing HW1 today

- It is due in 2 weeks (1/23 at 11:59 PM)
- The homework is long
 - Requires proving theorems as well as coding
- Please start early

Recitation sessions:

- Spark Tutorial:
 Friday, 3:00-4:20pm in Skilling Auditorium
Frequent Itemset Mining & Association Rules
Supermarket shelf management – Market-basket model:

- **Goal**: Identify items that are bought together by sufficiently many customers
- **Approach**: Process the sales data collected with barcode scanners to find dependencies among items
- **A classic rule**:
 - If someone buys diaper and milk, then he/she is likely to buy beer
 - Don’t be surprised if you find six-packs next to diapers!
A large set of items
- e.g., things sold in a supermarket

A large set of baskets
- Each basket is a small subset of items
 - e.g., the things one customer buys on one day

Discover association rules:
People who bought \{x,y,z\} tend to buy \{v,w\}
- Example application: Amazon

<table>
<thead>
<tr>
<th>Basket</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Rules Discovered:
- \{Milk\} --> \{Coke\}
- \{Diaper, Milk\} --> \{Beer\}
More generally

- A general many-to-many mapping (association) between two kinds of things
 - But we ask about connections among “items”, not “baskets”
- Items and baskets are abstract:
 - For example:
 - Items/baskets can be products/shopping basket
 - Items/baskets can be words/documents
 - Items/baskets can be basepairs/genes
 - Items/baskets can be drugs/patients
Applications – (1)

- **Items** = products; **Baskets** = sets of products someone bought in one trip to the store
- **Real market baskets:** Chain stores keep TBs of data about what customers buy together
 - Tells how typical customers navigate stores, lets them position tempting items together:
 - Apocryphal story of “diapers and beer” discovery
 - Used to position potato chips between diapers and beer to enhance sales of potato chips
- **Amazon’s ‘people who bought X also bought Y’**
Applications – (2)

- **Baskets** = sentences; **Items** = documents in which those sentences appear
 - Items that appear together too often could represent plagiarism
 - Notice items do not have to be “in” baskets

- **Baskets** = patients; **Items** = drugs & side-effects
 - Has been used to detect combinations of drugs that result in particular side-effects
 - **But requires extension**: Absence of an item needs to be observed as well as presence
First: Define
Frequent itemsets
Association rules:
 Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets
Finding frequent pairs
A-Priori algorithm
PCY algorithm
Frequent Itemsets

- **Simplest question:** Find sets of items that appear together “frequently” in baskets
- **Support** for itemset I: Number of baskets containing all items in I
 - (Often expressed as a fraction of the total number of baskets)
- Given a **support threshold** s, then sets of items that appear in at least s baskets are called **frequent itemsets**

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Support of \{Beer, Bread\} = 2
Example: Frequent Itemsets

- **Items** = \{milk, coke, pepsi, beer, juice\}
- **Support threshold** = 3 baskets

 \[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]

 \[B_3 = \{m, b\} \quad B_4 = \{c, j\} \]

 \[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]

 \[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- **Frequent itemsets:** \{m\}, \{c\}, \{b\}, \{j\}, \{m, b\}, \{b, c\}, \{c, j\}.
Define: Association Rules:

- If-then rules about the contents of baskets
- \(\{i_1, i_2, \ldots, i_k\} \rightarrow j \) means: “if a basket contains all of \(i_1, \ldots, i_k \) then it is likely to contain \(j \)”
- In practice there are many rules, want to find significant/interesting ones!
- **Confidence** of association rule is the probability of \(j \) given \(I = \{i_1, \ldots, i_k\} \)

\[
\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}
\]
Not all high-confidence rules are interesting

The rule $X \rightarrow \text{milk}$ may have high confidence for many itemsets X, because milk is just purchased very often (independent of X) and the confidence will be high.

Interest of an association rule $I \rightarrow j$: abs. difference between its confidence and the fraction of baskets that contain j

$$
\text{Interest}(I \rightarrow j) = |\text{conf}(I \rightarrow j) - \Pr[j]|
$$

Interesting rules are those with high interest values (usually above 0.5)
Example: Confidence and Interest

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

Association rule: \[\{m, b\} \rightarrow c \]

- **Support** = 2
- **Confidence** = \(\frac{2}{4} = 0.5 \)
- **Interest** = \(|0.5 - \frac{5}{8}| = \frac{1}{8} |\)
 - Item \(c \) appears in \(\frac{5}{8} \) of the baskets
 - The rule is not very interesting!
Association Rule Mining

- **Problem:** Find all association rules with support $\geq s$ and confidence $\geq c$

- **Note:** Support of an association rule is the support of the set of items in the rule (left and right side)

- **Hard part:** Finding the frequent itemsets!

 - If $\{i_1, i_2, \ldots, i_k\} \rightarrow j$ has high support and confidence, then both $\{i_1, i_2, \ldots, i_k\}$ and $\{i_1, i_2, \ldots, i_k, j\}$ will be “frequent”

 \[
 \text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}
 \]
Mining Association Rules

- **Step 1:** Find all frequent itemsets \(I \)
 - (we will explain this next)

- **Step 2:** Rule generation
 - For every subset \(A \) of \(I \), generate a rule \(A \rightarrow I \setminus A \)
 - Since \(I \) is frequent, \(A \) is also frequent
 - **Variant 1:** Single pass to compute the rule confidence
 - \(\text{confidence} (A,B \rightarrow C,D) = \frac{\text{support}(A,B,C,D)}{\text{support}(A,B)} \)
 - **Variant 2:**
 - **Observation:** If \(A,B,C \rightarrow D \) is below confidence, then so is \(A,B \rightarrow C,D \)
 - Can generate “bigger” rules from smaller ones!

- **Output the rules above the confidence threshold**
Example

- $B_1 = \{m, c, b\}$
- $B_2 = \{m, p, j\}$
- $B_3 = \{m, c, b, n\}$
- $B_4 = \{c, j\}$
- $B_5 = \{m, p, b\}$
- $B_6 = \{m, c, b, j\}$
- $B_7 = \{c, b, j\}$
- $B_8 = \{b, c\}$

- **Support threshold** $s = 3$, **confidence** $c = 0.75$

- **Step 1)** Find frequent itemsets:
 - $\{b,m\}$
 - $\{b,c\}$
 - $\{c,m\}$
 - $\{c,j\}$
 - $\{m,c,b\}$

- **Step 2)** Generate rules:
 - $b \rightarrow m: \frac{c}{6} = \frac{4}{6}$
 - $b \rightarrow c: \frac{c}{6} = \frac{5}{6}$
 - $b,c \rightarrow m: \frac{c}{6} = \frac{3}{5}$
 - $m \rightarrow b: \frac{c}{5} = \frac{4}{5}$
 - \ldots
 - $b,m \rightarrow c: \frac{c}{4} = \frac{3}{4}$
 - $b \rightarrow c,m: \frac{c}{6} = \frac{3}{6}$
To reduce the number of rules, we can post-process them and only output:

- **Maximal frequent itemsets:**
 No immediate superset is frequent
 - Gives more pruning

or

- **Closed itemsets:**
 No immediate superset has the same support (> 0)
 - Stores not only frequent information, but exact supports/counts
Example: Maximal/Closed

<table>
<thead>
<tr>
<th></th>
<th>Support</th>
<th>Maximal (s=3)</th>
<th>Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AB</td>
<td>4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>AC</td>
<td>2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BC</td>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ABC</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Frequent, but superset BC also frequent.
- Frequent, and its only superset, ABC, not freq.
- Superset BC has same support.
- Its only superset, ABC, has smaller support.
Step 2: Finding Frequent Itemsets
Itemsets: Computation Model

- **Back to finding frequent itemsets**
- Typically, data is kept in flat files rather than in a database system:
 - Stored on disk
 - Stored basket-by-basket
 - Baskets are **small** but we have many baskets and many items
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use k nested loops to generate all sets of size k

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to enumerate them.
The true cost of mining disk-resident data is usually the number of disk I/Os.

In practice, association-rule algorithms read the data in passes — all baskets read in turn.

We measure the cost by the number of passes an algorithm makes over the data.

Items are positive integers, and boundaries between baskets are −1.
For many frequent-itemset algorithms, main-memory is the critical resource

- As we read baskets, we need to count something, e.g., occurrences of pairs of items
- The number of different things we can count is limited by main memory
- Swapping counts in/out is a disaster
Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent *pairs* of items $\{i_1, i_2\}$
 - **Why?** Freq. pairs are common, freq. triples are rare
 - **Why?** Probability of being frequent drops exponentially with size; number of sets grows more slowly with size

- Let’s first concentrate on pairs, then extend to larger sets
Finding Frequent Pairs

- **The approach:**
 - We always need to “generate” all the itemsets
 - But we would only like to count (keep track of) those itemsets that in the end turn out to be frequent

- **Scenario:**
 - Imagine we aim to identify frequent pairs
 - We will need to enumerate all pairs of items
 - For every basket, enumerate all pairs of items in that basket
 - But, rather than keeping a count for every pair, we hope to discard a lot of pairs and only keep track of the ones that will in the end turn out to be frequent
Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
 - From each basket b of n_b items, generate its $n_b(n_b-1)/2$ pairs by two nested loops
 - A data structure then keeps count of every pair
- Fails if (#items)2 exceeds main memory

 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose 10^5 items, counts are 4-byte integers
 - Number of pairs of items: $10^5(10^5-1)/2 \approx 5*10^9$
 - Therefore, $2*10^{10}$ (20 gigabytes) of memory is needed
Goal: Count the number of occurrences of each pair of items \((i,j)\):

- **Approach 1:** Count all pairs using a matrix

- **Approach 2:** Keep a table of triples \([i, j, c]\) = “the count of the pair of items \(\{i, j\}\) is \(c\).”
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count \(> 0\)
 - Plus some additional overhead for the hashtable
Comparing the Two Approaches

Triangular Matrix

- 4 bytes per pair
- Item i
- Item j

Triples (item i, item j, count)

- 12 bytes per occurring pair
Approach 1: Triangular Matrix

- \(n = \) total number items
- Count pair of items \(\{i, j\} \) only if \(i < j \)
- Keep pair counts in lexicographic order:
 - \{1,2\}, \{1,3\},..., \{1,n\}, \{2,3\}, \{2,4\},...,\{2,n\}, \{3,4\},...
- Pair \(\{i, j\} \) is at position:
 \[
 \frac{n(n-1) - (n-i)(n-i+1)}{2} + (j-i)
 \]
- Total number of pairs \(n(n-1)/2 \); total bytes= \(O(n^2) \)
- **Triangular Matrix** requires 4 bytes per pair

Approach 2 uses **12 bytes** per occurring pair (but only for pairs with count > 0)

Approach 2 beats Approach 1 if less than \(1/3 \) of possible pairs actually occur
Comparing the Two Approaches

- **Approach 1: Triangular Matrix**
 - \(n \) = total number of items
 - Count pair \(\{i, j\} \) only if \(i < j \)
 - Keep pair counts in lexicographic order:
 - \(\{1,2\}, \{1,3\}, \ldots, \{1,n\}, \{2,3\}, \{2,4\}, \ldots, \{2,n\}, \{3,4\}, \ldots \)
 - Pair \(\{i, j\} \) is at position:
 - \[\frac{n(n-1)}{2} + (j - i) \]
 - Total number of pairs \(\frac{n(n-1)}{2} \)
 - Total bytes = \(O(n^2) \)
 - Triangular Matrix requires 4 bytes per pair

- **Approach 2** uses 12 bytes per occurring pair (but only for pairs with count > 0)

- Approach 2 beats Approach 1 if less than \(\frac{1}{3} \) of possible pairs actually occur

Problem is if we have too many items so all the pairs do not fit into memory. Can we do better?
A-Priori Algorithm

Key concepts:
• Monotonicity of “Frequent”
• Notion of Candidate Pairs
• Extension to Larger Itemsets
A two-pass approach called A-Priori limits the need for main memory.

Key idea: monotonicity

- If a set of items \(I \) appears at least \(s \) times, so does every subset \(J \) of \(I \).

Contrapositive for pairs:

- If item \(i \) does not appear in \(s \) baskets, then no pair including \(i \) can appear in \(s \) baskets.

So, how does A-Priori find freq. pairs?
A-Priori Algorithm – (2)

- **Pass 1:** Read baskets and count in main memory the # of occurrences of each **individual item**
 - Requires only memory proportional to #items

- **Items that appear ≥ s times are the frequent items**

- **Pass 2:** Read baskets again and keep track of the count of **only** those pairs where both elements are frequent (from Pass 1)
 - Requires memory (for counts) proportional to square of the number of **frequent** items (not the square of total # of items)
 - Plus a list of the frequent items (so you know what must be counted)
Main-Memory: Picture of A-Priori

Green box represents the amount of available main memory. Smaller boxes represent how the memory is used.
You can use the triangular matrix method with $n =$ number of frequent items

- May save space compared with storing triples

Trick: re-number frequent items 1,2,... and keep a table relating new numbers to original item numbers
For each k, we construct two sets of k-tuples (sets of size k):

- $C_k = \text{candidate } k\text{-tuples} = \text{those that might be frequent sets (support } \geq s\text{) based on information from the pass for } k-1$
- $L_k = \text{the set of truly frequent } k\text{-tuples}$

All items \rightarrow Filter \rightarrow Count the items \rightarrow All pairs of items from L_1 \rightarrow Construct \rightarrow Count the pairs \rightarrow Filter \rightarrow Construct \rightarrow To be explained
Hypothetical steps of the A-Priori algorithm

- $C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \}$
- Count the support of itemsets in C_1
- Prune non-frequent. We get: $L_1 = \{ b, c, j, m \}$
- Generate $C_2 = \{ \{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\} \}$
- Count the support of itemsets in C_2
- Prune non-frequent. $L_2 = \{ \{b,m\} \{b,c\} \{c,m\} \{c,j\} \}$
- Generate $C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \}$
- Count the support of itemsets in C_3
- Prune non-frequent. $L_3 = \{ \{b,c,m\} \}$

** Note here we generate new candidates by generating C_k from L_{k-1} and L_1. But one can be more careful with candidate generation. For example, in C_3 we know $\{b,m,j\}$ cannot be frequent since $\{m,j\}$ is not frequent.
A-Priori for All Frequent Itemsets

- One pass for each k (itemset size)
- Needs room in main memory to count each candidate k–tuple
- For typical market-basket data and reasonable support (e.g., 1%), $k = 2$ requires the most memory

Many possible extensions:

- Association rules with intervals:
 - For example: Men over 65 have 2 cars
- Association rules when items are in a taxonomy
 - Bread, Butter → FruitJam
 - BakedGoods, MilkProduct → PreservedGoods
- Lower the support s as itemset gets bigger
Key concepts:
- Improvement to A-Priori
- Exploits Empty Memory on First Pass
- Frequent Buckets
PCY (Park-Chen-Yu) Algorithm

- **Observation:**
 In pass 1 of A-Priori, most memory is idle
 - We store only individual item counts
 - **Can we use the idle memory to reduce memory required in pass 2?**

- **Pass 1 of PCY:** In addition to item counts, maintain a hash table with as many **buckets** as fit in memory
 - Keep a **count** for each bucket into which **pairs** of items are **hashed**
 - For each bucket just keep the count, not the actual pairs that hash to the bucket!

Note:
Bucket ≠ Basket
FOR (each basket):
 FOR (each item in the basket):
 add 1 to item’s count;
 FOR (each pair of items in the basket):
 hash the pair to a bucket;
 add 1 to the count for that bucket;

- Few things to note:
 - Pairs of items need to be generated from the input file; they are not present in the file
 - We are not just interested in the presence of a pair, but we need to see whether it is present at least s (support) times
Observations about Buckets

- **Observation**: If a bucket contains a **frequent pair**, then the bucket is surely **frequent**
- However, even without any frequent pair, a bucket can still be frequent 😞
 - So, we cannot use the hash to eliminate any member (pair) of a “frequent” bucket
- **But, for a bucket with total count less than s, none of its pairs can be frequent 😊**
 - Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items)

- **Pass 2:**
 Only count pairs that hash to frequent buckets
Replace the buckets by a bit-vector:
- 1 means the bucket count exceeded the support s (call it a frequent bucket); 0 means it did not

4-byte integer counts are replaced by bits, so the bit-vector requires 1/32 of memory

Also, decide which items are frequent and list them for the second pass
Count all pairs \(\{i, j\} \) that meet the conditions for being a candidate pair:

1. Both \(i \) and \(j \) are frequent items
2. The pair \(\{i, j\} \) hashes to a bucket whose bit in the bit vector is 1 (i.e., a frequent bucket)

Both conditions are necessary for the pair to have a chance of being frequent
Main-Memory: Picture of PCY

- Item counts
- Frequent items
- Bitmap
- Counts of candidate pairs

Pass 1

Pass 2

Main memory

Hash table for pairs

The MMDS book covers several other extensions beyond the PCY idea: “Multistage” and “Multihash”

For reading on your own, Sect. 6.4 of MMDS

Recommended video (starting about 10:10):
https://www.youtube.com/watch?v=AGAkNiQnbjY
Frequent Itemsets in ≤ 2 Passes

Key concepts:
- Random Sampling Algorithm
- Savasere-Omiecinski-Navathe (SON) Algorithm
- Toivonen’s Algorithm
Frequent Itemsets in ≤ 2 Passes

- A-Priori, PCY, etc., take k passes to find frequent itemsets of size k

- **Can we use fewer passes?**

- Use 2 or fewer passes for all sizes, but may miss some frequent itemsets

- **3 different approaches:**
 - Random sampling
 - Do not sneer; “random sample” is often a cure for the problem of having too large a dataset.
 - SON (Savasere, Omiecinski, and Navathe)
 - Toivonen
Take a random sample of the market baskets

Run \textit{a-priori} or one of its improvements in main memory:

- So we don’t pay for disk I/O each time we increase the size of itemsets
- Reduce support threshold proportionally to match the sample size
 - \textbf{Example:} if your sample is 1/100 of the baskets, use \(s/100 \) as your support threshold instead of \(s \).
Random Sampling (2)

- **To avoid false positives:** Optionally, verify that the candidate pairs are truly frequent in the entire data set by a second pass.

- **But you don’t catch sets that are frequent in the whole data but not in the sample:**
 - Smaller threshold, e.g., $s/125$, helps catch more truly frequent itemsets.
 - But requires more space.

- **SON algorithm tries to deal with this (next)**
SON Algorithm – 2-pass algorithm

- **SON Algorithm**: Repeatedly read small subsets of the baskets into main memory and run an in-memory algorithm to find all frequent itemsets
 - **Note**: we are not sampling, but processing the entire file in memory-sized chunks

- An itemset becomes a **candidate** if it is found to be frequent in **any** one or more subsets of the baskets.
SON Algorithm – 2nd pass

- On a second pass, count all the candidate itemsets and determine which are frequent in the entire set.

- Key “monotonicity” idea: An itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.

- However, even with SON algorithm we still don’t know whether we found all frequent itemsets.

- Toivonen’s algorithm solves this (next)
Toivonen’s Algorithm: Intro

Pass 1:
- Start with a random sample, but lower the threshold slightly for the sample:
 - Example: if the sample is 1% of the baskets, use \(s/125 \) as the support threshold rather than \(s/100 \)
- Find frequent itemsets in the sample
- Add the negative border to the itemsets that are frequent in the sample:
 - Negative border: An itemset is in the negative border if it is not frequent in the sample, but all its immediate subsets are
 - Immediate subset = “delete exactly one element”
\{A,B,C,D\} is in the negative border if and only if:

1. It is not frequent in the sample, but
2. All of \{A,B,C\}, \{B,C,D\}, \{A,C,D\}, and \{A,B,D\} are.
Toivonen’s Algorithm

- **Pass 1:**
 - Start with the random sample, but lower the threshold slightly for the subset
 - Add to the itemsets that are frequent in the sample the negative border of these itemsets

- **Pass 2:**
 - Count all candidate frequent itemsets from the first pass, and also count sets in their negative border

- If no itemset from the negative border turns out to be frequent, then we found *all* the frequent itemsets.
 - What if we find that something in the negative border is frequent?
 - We must start over again with another sample!
 - Try to choose the support threshold so the probability of failure is low, while the number of itemsets checked on the second pass fits in main-memory.
If Something in the Negative Border Is Frequent . . .

We broke through the negative border. How far does the problem go?

... tripletons
doubletons
singleton
Theorem:

- If there is an itemset S that is frequent in full data, but not frequent in the sample, then the negative border contains at least one itemset that is frequent in the whole.

Proof by contradiction:

- Suppose not; i.e.

 1. There is an itemset S frequent in the full data but not frequent in the sample, and
 2. Nothing in the negative border is frequent in the full data

- Let T be a smallest subset of S that is not frequent in the sample (but every subset of T is)

- T is frequent in the whole (S is frequent + monotonicity).

- But then T is in the negative border (contradiction)