2 Announcements

We will be releasing HW1 today
- It is due in 2 weeks (1/25 at 23:59pm)
- The homework is long
 - Requires proving theorems as well as coding
- Please start early

Recitation sessions:
- Spark Tutorial and Clinic:
 Today 4:30-5:50pm in Skilling Auditorium
Supermarket shelf management – Market-basket model:

- **Goal:** Identify items that are bought together by sufficiently many customers
- **Approach:** Process the sales data collected with barcode scanners to find dependencies among items
- **A classic rule:**
 - If someone buys diaper and milk, then he/she is likely to buy beer
 - Don’t be surprised if you find six-packs next to diapers!
The Market-Basket Model

- A large set of items
 - e.g., things sold in a supermarket
- A large set of baskets
 - Each basket is a small subset of items
 - e.g., the things one customer buys on one day
- Discover association rules:
 People who bought \{x,y,z\} tend to buy \{v,w\}
 - Amazon!

Input:

<table>
<thead>
<tr>
<th>Basket</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
</tr>
</tbody>
</table>

Output:

Rules Discovered:

- \{Milk\} --> \{Coke\}
- \{Diaper, Milk\} --> \{Beer\}
More generally

- A general many-to-many mapping (association) between two kinds of things
 - But we ask about connections among “items”, not “baskets”
- Items and baskets are abstract:
 - For example:
 - Items/baskets can be products/shopping basket
 - Items/baskets can be words/documents
 - Items/baskets can be basepairs/genes
 - Items/baskets can be drugs/patients
Applications – (1)

- **Items** = products; **Baskets** = sets of products someone bought in one trip to the store
- **Real market baskets:** Chain stores keep TBs of data about what customers buy together
 - Tells how typical customers navigate stores, lets them position tempting items:
 - Apocryphal story of “diapers and beer” discovery
 - Used to position potato chips between diapers and beer to enhance sales of potato chips
- **Amazon’s people who bought X also bought Y**
Baskets = sentences; Items = documents in which those sentences appear

- Items that appear together too often could represent plagiarism
- Notice items do not have to be “in” baskets

Baskets = patients; Items = drugs & side-effects

- Has been used to detect combinations of drugs that result in particular side-effects
- But requires extension: Absence of an item needs to be observed as well as presence
Outline

First: Define
- Frequent itemsets
- Association rules:
 - Confidence, Support, Interestingness

Then: Algorithms for finding frequent itemsets
- Finding frequent pairs
- A-Priori algorithm
- PCY algorithm
Frequent Itemsets

- **Simplest question:** Find sets of items that appear together “frequently” in baskets

- **Support** for itemset I: Number of baskets containing all items in I
 - (Often expressed as a fraction of the total number of baskets)

- Given a **support threshold** δ, then sets of items that appear in at least δ baskets are called **frequent itemsets**

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
<th>Support of {Beer, Bread} = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bread, Coke, Milk</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Beer, Bread</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Beer, Coke, Diaper, Milk</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Beer, Bread, Diaper, Milk</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Coke, Diaper, Milk</td>
<td></td>
</tr>
</tbody>
</table>
Example: Frequent Itemsets

- **Items** = \{milk, coke, pepsi, beer, juice\}
- **Support threshold** = 3 baskets

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- **Frequent itemsets**: \{m\}, \{c\}, \{b\}, \{j\}, \{m, b\}, \{b, c\}, \{c, j\}.
Association Rules

- **Association Rules:**
 If-then rules about the contents of baskets

- \(\{i_1, i_2, \ldots, i_k\} \rightarrow j \) means: “if a basket contains all of \(i_1, \ldots, i_k \) then it is *likely* to contain \(j \)”

- In practice there are many rules, want to find significant/interesting ones!

- **Confidence** of association rule is the probability of \(j \) given \(I = \{i_1, \ldots, i_k\} \)

\[
\text{conf}(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}
\]
Not all high-confidence rules are interesting

- The rule $X \rightarrow \textit{milk}$ may have high confidence for many itemsets X, because milk is just purchased very often (independent of X) and the confidence will be high

- **Interest** of an association rule $I \rightarrow j$: difference between its confidence and the fraction of baskets that contain j

 $$\text{Interest}(I \rightarrow j) = |\text{conf}(I \rightarrow j) - \Pr[j]|$$

- Interesting rules are those with high positive or negative interest values (usually above 0.5)
Example: Confidence and Interest

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, b\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- **Association rule:** \(\{m, b\} \rightarrow c \)
 - **Support** = 2
 - **Confidence** = \(2/4 = 0.5\)
 - **Interest** = \(|0.5 - 5/8| = 1/8 \)
 - Item \(c \) appears in \(5/8\) of the baskets
 - Rule is not very interesting!
Finding Association Rules

- **Problem:** Find all association rules with support $\geq s$ and confidence $\geq c$
 - **Note:** Support of an association rule is the support of the set of items in the rule (left and right side)
- **Hard part:** Finding the frequent itemsets!
 - If $\{i_1, i_2, \ldots, i_k\} \rightarrow j$ has high support and confidence, then both $\{i_1, i_2, \ldots, i_k\}$ and $\{i_1, i_2, \ldots, i_k, j\}$ will be “frequent”

$$conf(I \rightarrow j) = \frac{\text{support}(I \cup j)}{\text{support}(I)}$$
Mining Association Rules

- **Step 1:** Find all frequent itemsets I
 - (we will explain this next)
- **Step 2:** Rule generation
 - For every subset A of I, generate a rule $A \rightarrow I \setminus A$
 - Since I is frequent, A is also frequent
 - **Variant 1:** Single pass to compute the rule confidence
 - $\text{confidence}(A,B \rightarrow C,D) = \text{support}(A,B,C,D) / \text{support}(A,B)$
 - **Variant 2:**
 - **Observation:** If $A,B,C \rightarrow D$ is below confidence, so is $A,B \rightarrow C,D$
 - Can generate “bigger” rules from smaller ones!
 - **Output the rules above the confidence threshold**
Example

\[B_1 = \{m, c, b\} \quad B_2 = \{m, p, j\} \]
\[B_3 = \{m, c, b, n\} \quad B_4 = \{c, j\} \]
\[B_5 = \{m, p, b\} \quad B_6 = \{m, c, b, j\} \]
\[B_7 = \{c, b, j\} \quad B_8 = \{b, c\} \]

- **Support threshold** \(s = 3 \), **confidence** \(c = 0.75 \)

1) **Frequent itemsets:**
 - \{b,m\} \{b,c\} \{c,m\} \{c,j\} \{m,c,b\}

2) **Generate rules:**
 - \(b \rightarrow m: c=4/6 \quad b \rightarrow c: c=5/6 \quad b,c \rightarrow m: c=3/5 \)
 - \(m \rightarrow b: c=4/5 \quad ... \quad b,m \rightarrow c: c=3/4 \quad b \rightarrow c,m: c=3/6 \)
To reduce the number of rules we can post-process them and only output:

- **Maximal frequent itemsets:**
 No immediate superset is frequent
 - Gives more pruning

or

- **Closed itemsets:**
 No immediate superset has the same support (> 0)
 - Stores not only frequent information, but exact supports/counts
Example: Maximal/Closed

<table>
<thead>
<tr>
<th></th>
<th>Support</th>
<th>Maximal(s=3)</th>
<th>Closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>AB</td>
<td>4</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>AC</td>
<td>2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>BC</td>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ABC</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Frequent, but superset BC also frequent.
- Frequent, and its only superset, ABC, not freq.
- Superset BC has same support.
- Its only superset, ABC, has smaller support.
Finding Frequent Itemsets
Itemsets: Computation Model

- **Back to finding frequent itemsets**
- Typically, data is kept in flat files rather than in a database system:
 - Stored on disk
 - Stored basket-by-basket
 - Baskets are **small** but we have many baskets and many items
 - Expand baskets into pairs, triples, etc. as you read baskets
 - Use k nested loops to generate all sets of size k

Note: We want to find frequent itemsets. To find them, we have to count them. To count them, we have to enumerate them.
The true cost of mining disk-resident data is usually the **number of disk I/Os**

In practice, association-rule algorithms read the data in **passes** – all baskets read in turn

We measure the cost by the **number of passes** an algorithm makes over the data

Items are positive integers, and boundaries between baskets are -1.
Main-Memory Bottleneck

- For many frequent-itemset algorithms, **main-memory** is the critical resource
 - As we read baskets, we need to count something, e.g., occurrences of pairs of items
 - The number of different things we can count is limited by main memory
 - Swapping counts in/out is a disaster
Finding Frequent Pairs

- The hardest problem often turns out to be finding the frequent **pairs** of items \(\{i_1, i_2\} \)
 - **Why?** Freq. pairs are common, freq. triples are rare
 - **Why?** Probability of being frequent drops exponentially with size; number of sets grows more slowly with size

- Let’s first concentrate on **pairs**, then extend to larger sets

- **The approach:**
 - We always need to generate all the itemsets
 - But we would only like to count (keep track) of those itemsets that in the end turn out to be frequent
Naïve Algorithm

- Naïve approach to finding frequent pairs
- Read file once, counting in main memory the occurrences of each pair:
 - From each basket of \(n \) items, generate its \(n(n-1)/2 \) pairs by two nested loops
- Fails if \((\#\text{items})^2\) exceeds main memory
 - Remember: \#items can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose \(10^5 \) items, counts are 4-byte integers
 - Number of pairs of items: \(10^5(10^5-1)/2 \approx 5*10^9 \)
 - Therefore, \(2*10^{10} \) (20 gigabytes) of memory needed
Counting Pairs in Memory

Two approaches:

- **Approach 1**: Count all pairs using a matrix
- **Approach 2**: Keep a table of triples \([i, j, c] = \) “the count of the pair of items \(\{i, j\} \) is \(c\).”
 - If integers and item ids are 4 bytes, we need approximately 12 bytes for pairs with count > 0
 - Plus some additional overhead for the hashtable
Comparing the 2 Approaches

4 bytes per pair

Triangular Matrix

12 per occurring pair

Triples
Comparing the two approaches

Approach 1: Triangular Matrix
- $n =$ total number items
- Count pair of items $\{i, j\}$ only if $i < j$
- Keep pair counts in lexicographic order:
 - $\{1,2\}, \{1,3\},..., \{1,n\}, \{2,3\}, \{2,4\},...,\{2,n\}, \{3,4\},...$
- Pair $\{i, j\}$ is at position: $(i - 1)(j - 1) + j - 1$
- Total number of pairs $n(n - 1)/2$; total bytes $\text{O}(n^2)$
- **Triangular Matrix** requires 4 bytes per pair

Approach 2 uses **12 bytes** per occurring pair (but only for pairs with count > 0)

Approach 2 beats Approach 1 if less than $1/3$ of possible pairs actually occur
Approach 1: Triangular Matrix

- **n** = total number of items
- Count pair of items \(\{i, j\} \) only if \(i < j \)
- Keep count of pairs in lexicographic order:
 - \(\{1,2\}, \{1,3\}, \ldots, \{1,n\}, \{2,3\}, \{2,4\}, \ldots, \{2,n\}, \{3,4\}, \ldots \)
- Pair \(\{i, j\} \) is at position \((i-1)(n-i)/2 + j - 1 \)
- Total number of pairs \(n(n-1)/2 \); total bytes = \(2n^2 \)

Approach 2

- Uses 12 bytes per occurring pair (but only for pairs with count > 0)

Problem:
- Too many items so the pairs do not fit into memory.

Can we do better?
- Approach 2 beats Approach 1 if less than \(1/3 \) of possible pairs actually occur.
• Monotonicity of “Frequent”
• Notion of Candidate Pairs
• Extension to Larger Itemsets
A two-pass approach called **A-Priori** limits the need for main memory

Key idea: monotonicity
- If a set of items I appears at least s times, so does every subset J of I

Contrapositive for pairs:
If item i does not appear in s baskets, then no pair including i can appear in s baskets

So, how does A-Priori find freq. pairs?
A-Priori Algorithm – (2)

- **Pass 1**: Read baskets and count in main memory the occurrences of each individual item
 - Requires only memory proportional to #items

- **Items that appear $\geq s$ times are the frequent items**

- **Pass 2**: Read baskets again and count in main memory only those pairs where both elements are frequent (from Pass 1)
 - Requires memory proportional to square of frequent items only (for counts)
 - Plus a list of the frequent items (so you know what must be counted)
Main-Memory: Picture of A-Priori

Green box represents the amount of available main memory. Smaller boxes represent how the memory is used.
You can use the triangular matrix method with $n = \text{number of frequent items}$

- May save space compared with storing triples

Trick: re-number frequent items 1,2,... and keep a table relating new numbers to original item numbers
For each k, we construct two sets of k-tuples (sets of size k):

- $C_k = \text{candidate } k\text{-tuples} = \text{those that might be frequent sets (support } \geq s\text{) based on information from the pass for } k-1$
- $L_k = \text{the set of truly frequent } k\text{-tuples}$
Hypothetical steps of the A-Priori algorithm

- \(C_1 = \{ \{b\} \{c\} \{j\} \{m\} \{n\} \{p\} \} \)
- Count the support of itemsets in \(C_1 \)
- Prune non-frequent: \(L_1 = \{ b, c, j, m \} \)
- Generate \(C_2 = \{ \{b,c\} \{b,j\} \{b,m\} \{c,j\} \{c,m\} \{j,m\} \} \)
- Count the support of itemsets in \(C_2 \)
- Prune non-frequent: \(L_2 = \{ \{b,m\} \{b,c\} \{c,m\} \{c,j\} \} \)
- Generate \(C_3 = \{ \{b,c,m\} \{b,c,j\} \{b,m,j\} \{c,m,j\} \} \)
- Count the support of itemsets in \(C_3 \)
- Prune non-frequent: \(L_3 = \{ \{b,c,m\} \} \)

** Note here we generate new candidates by generating \(C_k \) from \(L_{k-1} \) and \(L_1 \). But that one can be more careful with candidate generation. For example, in \(C_3 \) we know \(\{b,m,j\} \) cannot be frequent since \(\{m,j\} \) is not frequent.
A-Priori for All Frequent Itemsets

- One pass for each k (itemset size)
- Needs room in main memory to count each candidate k–tuple
- For typical market-basket data and reasonable support (e.g., 1%), $k = 2$ requires the most memory

Many possible extensions:
- Association rules with intervals:
 - For example: Men over 65 have 2 cars
- Association rules when items are in a taxonomy
 - Bread, Butter \rightarrow FruitJam
 - BakedGoods, MilkProduct \rightarrow PreservedGoods
- Lower the support s as itemset gets bigger
PCY (Park-Chen-Yu) Algorithm

- Improvement to A-Priori
- Exploits Empty Memory on First Pass
- Frequent Buckets
Observation:
In pass 1 of A-Priori, most memory is idle
- We store only individual item counts
- Can we use the idle memory to reduce memory required in pass 2?

Pass 1 of PCY: In addition to item counts, maintain a hash table with as many buckets as fit in memory
- Keep a count for each bucket into which pairs of items are hashed
 - For each bucket just keep the count, not the actual pairs that hash to the bucket!
PCY Algorithm – First Pass

FOR (each basket) :
 FOR (each item in the basket) :
 add 1 to item’s count;
 FOR (each pair of items) :
 hash the pair to a bucket;
 add 1 to the count for that bucket;

- Few things to note:
 - Pairs of items need to be generated from the input file; they are not present in the file
 - We are not just interested in the presence of a pair, but we need to see whether it is present at least s (support) times
Observation: If a bucket contains a frequent pair, then the bucket is surely frequent

However, even without any frequent pair, a bucket can still be frequent 😞

- So, we cannot use the hash to eliminate any member (pair) of a “frequent” bucket

But, for a bucket with total count less than s, none of its pairs can be frequent 😊

- Pairs that hash to this bucket can be eliminated as candidates (even if the pair consists of 2 frequent items)

Pass 2:

Only count pairs that hash to frequent buckets
Replace the buckets by a bit-vector:
- 1 means the bucket count exceeded the support \(s \) (call it a frequent bucket); 0 means it did not

- 4-byte integer counts are replaced by bits, so the bit-vector requires 1/32 of memory

- Also, decide which items are frequent and list them for the second pass
Count all pairs \(\{i, j\} \) that meet the conditions for being a candidate pair:

1. Both \(i \) and \(j \) are frequent items
2. The pair \(\{i, j\} \) hashes to a bucket whose bit in the bit vector is 1 (i.e., a frequent bucket)

Both conditions are necessary for the pair to have a chance of being frequent
Main-Memory: Picture of PCY

Hash table
Item counts
Pass 1
Frequent items
Bitmap
Counts of candidate pairs
Pass 2

Main memory

More Extensions to A-Priori

- The MMDS book covers several other extensions beyond the PCY idea: “Multistage” and “Multihash”

- For reading on your own, Sect. 6.4 of MMDS

- **Recommended video** (starting about 10:10): https://www.youtube.com/watch?v=AGAkNiQnbjY
Frequent Itemsets in ≤ 2 Passes

- Simple Algorithm
- Savasere-Omiecinski-Navathe (SON) Algorithm
- Toivonen’s Algorithm
Frequent Itemsets in ≤ 2 Passes

- A-Priori, PCY, etc., take k passes to find frequent itemsets of size k

- Can we use fewer passes?

- Use 2 or fewer passes for all sizes, but may miss some frequent itemsets
 - Random sampling
 - Do not sneer; “random sample” is often a cure for the problem of having too large a dataset.
 - SON (Savasere, Omiecinski, and Navathe)
 - Toivonen
Random Sampling (1)

- Take a random sample of the market baskets

- Run a-priori or one of its improvements in main memory
 - So we don’t pay for disk I/O each time we increase the size of itemsets
 - Reduce support threshold proportionally to match the sample size
 - Example: if your sample is 1/100 of the baskets, use $s/100$ as your support threshold instead of s.

Copy of sample baskets

Main memory

Space for counts
To avoid false positives: Optionally, verify that the candidate pairs are truly frequent in the entire data set by a second pass.

But you don’t catch sets frequent in the whole but not in the sample:

- Smaller threshold, e.g., $s/125$, helps catch more truly frequent itemsets
 - But requires more space
SON Algorithm – (1)

- **SON Algorithm**: Repeatedly read small subsets of the baskets into main memory and run an in-memory algorithm to find all frequent itemsets
 - **Note**: we are not sampling, but processing the entire file in memory-sized chunks

- An itemset becomes a **candidate** if it is found to be frequent in *any* one or more subsets of the baskets.
On a second pass, count all the candidate itemsets and determine which are frequent in the entire set.

Key “monotonicity” idea: An itemset cannot be frequent in the entire set of baskets unless it is frequent in at least one subset.
Pass 1:

- Start with a random sample, but lower the threshold slightly for the sample:
 - Example: if the sample is 1% of the baskets, use $s/125$ as the support threshold rather than $s/100$
- Find frequent itemsets in the sample
- Add to the itemsets that are frequent in the sample the negative border of these itemsets:
 - Negative border: An itemset is in the negative border if it is not frequent in the sample, but all its immediate subsets are
 - Immediate subset = “delete exactly one element”
\{A,B,C,D\} is in the negative border if and only if:

1. It is not frequent in the sample, but
2. All of \{A,B,C\}, \{B,C,D\}, \{A,C,D\}, and \{A,B,D\} are.
Toivonen’s Algorithm

- **Pass 1:**
 - Start as in the SON algorithm, but lower the threshold slightly for the sample
 - Add to the itemsets that are frequent in the sample the **negative border** of these itemsets

- **Pass 2:**
 - Count all **candidate frequent itemsets from the first pass**, and also count sets in their **negative border**

- If no itemset from the negative border turns out to be frequent, then we found **all** the frequent itemsets.
 - What if we find that something in the negative border is frequent?
 - We must start over again with another sample!
 - Try to choose the support threshold so the probability of failure is low, while the number of itemsets checked on the second pass fits in main-memory.
If Something in the Negative Border Is Frequent . . .

We broke through the negative border. How far does the problem go?

... tripletons
doubletons
singletons

Frequent Itemsets from Sample

Negative Border
Theorem:

- If there is an itemset S that is frequent in full data, but not frequent in any sample, then the negative border contains at least one itemset that is frequent in the whole.

Proof by contradiction:

- Suppose not; i.e.,
 1. There is an itemset S frequent in the full data but not frequent in the sample, and
 2. Nothing in the negative border is frequent in the full data

- Let T be a smallest subset of S that is not frequent in the sample (but every subset of T is)
- T is frequent in the whole (S is frequent + monotonicity).
- But then T is in the negative border (contradiction)