Dimensionality Reduction: SVD & CUR

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
Charilaos Kanatsoulis, Stanford University
http://cs246.stanford.edu
Often, our data can be represented by an \(m \)-by-\(n \) matrix

And this matrix can be closely approximated by the product of three matrices that share a small common dimension \(r \).
Compress / reduce dimensionality:
- 10^6 rows; 10^3 columns; no updates
- Random access to any cell(s); small error: OK

Note: The above matrix is really “2-dimensional.” All rows can be reconstructed by scaling $[1 \ 1 \ 1 \ 0 \ 0]$ or $[0 \ 0 \ 0 \ 1 \ 1]$
There are hidden, or latent factors, latent dimensions that – to a close approximation – explain why the values are as they appear in the data matrix.
The axes of these dimensions can be chosen by:

- The first dimension is the direction in which the points exhibit the greatest variance.
- The second dimension is the direction, orthogonal to the first, in which points show the 2nd greatest variance.
- And so on..., until you have enough dimensions that variance is really low.

\[D = 2 \quad d = 1 \]

\[D = 3 \quad d = 2 \]
Q: What is rank of a matrix A?
A: Number of linearly independent rows of A

Cloud of points in 3D space:
- Think of point coordinates as a matrix:
 \[
 \begin{bmatrix}
 1 & 2 & 1 \\
 -2 & -3 & 1 \\
 3 & 5 & 0
 \end{bmatrix}
 \]
- 1 row per point:
 A: [1 0], B: [0 1], C: [1 -1]

We can rewrite coordinates more efficiently!
- Old basis vectors: [1 0 0] [0 1 0] [0 0 1]
- New basis vectors: [1 2 1] [-2 -3 1]
- Then A has new coordinates: [1 0], B: [0 1], C: [1 -1]

Notice: We reduced the number of dimensions/coordinates!
Goal of dimensionality reduction is to discover the axes of data!

Rather than representing every point with 2 coordinates we represent each point with 1 coordinate (corresponding to the position of the point on the red line).

By doing this we incur a bit of error as the points do not exactly lie on the line.
SVD: Singular Value Decomposition
Reducing Matrix Dimension

- Gives a decomposition of any matrix into a product of three matrices:

\[\mathbf{A} \approx \mathbf{U} \mathbf{Σ} \mathbf{V}^T \]

- There are strong constraints on the form of each of these matrices
 - Results in a unique decomposition
 - From this decomposition, you can choose any number \(r \) of intermediate concepts (latent factors) in a way that minimizes the reconstruction error
SVD – Definition

\[
A \approx U \Sigma V^T = \sum_i \sigma_i u_i \circ v_i^T
\]

- **A**: Input data matrix
 - \(m \times n \) matrix (e.g., \(m \) documents, \(n \) terms)
- **U**: Left singular vectors
 - \(m \times r \) matrix (\(m \) documents, \(r \) concepts)
- **\(\Sigma \)**: Singular values
 - \(r \times r \) diagonal matrix (strength of each ‘concept’)
 - \(r : \text{rank of the matrix } A \)
- **V**: Right singular vectors
 - \(n \times r \) matrix (\(n \) terms, \(r \) concepts)
If we set $\sigma_2 = 0$, then the green columns may as well not exist.
It is **always** possible to decompose a real matrix A into $A = U \Sigma V^T$, where

- U, Σ, V: unique
- U, V: column orthonormal
 - $U^T U = I$; $V^T V = I$ (I: identity matrix)
 - (Columns are orthogonal unit vectors)
- Σ: diagonal
 - Entries (**singular values**) are non-negative, and sorted in decreasing order ($\sigma_1 \geq \sigma_2 \geq ... \geq 0$)

Nice proof of uniqueness: https://www.cs.cornell.edu/courses/cs322/2008sp/stuff/TrefethenBau_Lec4_SVD.pdf
Consider a matrix. What does SVD do?

Ratings matrix where each column corresponds to a movie and each row to a user. First 4 users prefer SciFi, while others prefer Romance.
SVD – Example: Users-to-Movies

\[A = U \sum V^T \ - \text{example: Users to Movies} \]

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2 \\
\end{bmatrix}
=
\begin{bmatrix}
0.13 & 0.02 & -0.01 \\
0.41 & 0.07 & -0.03 \\
0.55 & 0.09 & -0.04 \\
0.68 & 0.11 & -0.05 \\
0.15 & -0.59 & 0.65 \\
0.07 & -0.73 & -0.67 \\
0.07 & -0.29 & 0.32 \\
\end{bmatrix} \times
\begin{bmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.3 \\
\end{bmatrix} \times
\begin{bmatrix}
0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\
0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\
0.40 & -0.80 & 0.40 & 0.09 & 0.09 \\
\end{bmatrix}
\]
A = U \Sigma V^T - example: Users to Movies

SciFi-concept

Romance-concept

Matrix

<table>
<thead>
<tr>
<th>SciFi</th>
<th>Romance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 0 0</td>
<td>0.13 0.02 -0.01</td>
</tr>
<tr>
<td>3 3 3 0 0</td>
<td>0.41 0.07 -0.03</td>
</tr>
<tr>
<td>4 4 4 0 0</td>
<td>0.55 0.09 -0.04</td>
</tr>
<tr>
<td>5 5 5 0 0</td>
<td>0.68 0.11 -0.05</td>
</tr>
<tr>
<td>0 2 0 4 4</td>
<td>0.15 -0.59 0.65</td>
</tr>
<tr>
<td>0 0 0 5 5</td>
<td>0.07 -0.73 -0.67</td>
</tr>
<tr>
<td>0 1 0 2 2</td>
<td>0.07 -0.29 0.32</td>
</tr>
</tbody>
</table>

SciFi

Romance

12.4 0 0
0 9.5 0
0 0 1.3

0.56 0.59 0.56 0.09 0.09
0.12 -0.02 0.12 -0.69 -0.69
0.40 -0.80 0.40 0.09 0.09
\[A = U \Sigma V^T \] - example:

\[U \] is "user-to-concept" factor matrix

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.13 & 0.02 & -0.01 \\
0.41 & 0.07 & -0.03 \\
0.55 & 0.09 & -0.04 \\
0.68 & 0.11 & -0.05 \\
0.15 & -0.59 & 0.65 \\
0.07 & -0.73 & -0.67 \\
0.07 & -0.29 & 0.32 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.3 \\
\end{bmatrix}
\]
A = U \Sigma V^T - example:

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2
\end{bmatrix}
\]

=

\[
\begin{bmatrix}
0.13 & 0.02 & -0.01 \\
0.41 & 0.07 & -0.03 \\
0.55 & 0.09 & -0.04 \\
0.68 & 0.11 & -0.05 \\
0.15 & -0.59 & 0.65 \\
0.07 & -0.73 & -0.67 \\
0.07 & -0.29 & 0.32
\end{bmatrix}
\]

\[
\begin{bmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.3
\end{bmatrix}
\]

“strength” of the SciFi-concept

SciFi

Romance
SVD – Example: Users-to-Movies

- **A = U \Sigma V^T - example:**

<table>
<thead>
<tr>
<th></th>
<th>SciFi</th>
<th>Romance</th>
<th>SciFi-concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alien</td>
<td>1</td>
<td>0</td>
<td>0.13</td>
</tr>
<tr>
<td>Serenity</td>
<td>1</td>
<td>0</td>
<td>0.41</td>
</tr>
<tr>
<td>Casablanca</td>
<td>1</td>
<td>0</td>
<td>0.55</td>
</tr>
<tr>
<td>Amelie</td>
<td>0</td>
<td>0</td>
<td>0.68</td>
</tr>
</tbody>
</table>

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.13 & 0.02 & -0.01 \\
0.41 & 0.07 & -0.03 \\
0.55 & 0.09 & -0.04 \\
0.68 & 0.11 & -0.05 \\
0.15 & -0.59 & 0.65 \\
0.07 & -0.73 & -0.67 \\
0.07 & -0.29 & 0.32 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.3 \\
\end{bmatrix}
\]

V is “movie-to-concept” factor matrix
Movies, users and concepts:

- U: user-to-concept matrix
- V: movie-to-concept matrix
- Σ: its diagonal elements: ‘strength’ of each concept
Dimensionality Reduction with SVD
Instead of using two coordinates \((x, y)\) to describe point positions, let’s use only one coordinate.

Point’s position is its location along vector \(v_1\).
SVD – Dimensionality Reduction

- \(A = U \Sigma V^T \) - example:
 - **U**: “user-to-concept” matrix
 - **V**: “movie-to-concept” matrix

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2
\end{bmatrix}
\begin{bmatrix}
0.13 & 0.02 & -0.01 \\
0.41 & 0.07 & -0.03 \\
0.55 & 0.09 & -0.04 \\
0.68 & 0.11 & -0.05 \\
0.15 & -0.59 & 0.65 \\
0.07 & -0.73 & -0.67 \\
0.07 & -0.29 & 0.32
\end{bmatrix}
\begin{bmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.3
\end{bmatrix}
\]
A = U \Sigma V^T - example:

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2
\end{bmatrix}
=
\begin{bmatrix}
0.13 & 0.02 & -0.01 \\
0.41 & 0.07 & -0.03 \\
0.55 & 0.09 & -0.04 \\
0.68 & 0.11 & -0.05 \\
0.15 & -0.59 & 0.65 \\
0.07 & -0.73 & -0.67 \\
0.07 & -0.29 & 0.32
\end{bmatrix}
=
\begin{bmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.3
\end{bmatrix}
\times
\begin{bmatrix}
0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\
0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\
0.40 & -0.80 & 0.40 & 0.09 & 0.09
\end{bmatrix}
\[A = U \Sigma V^T \] - example:

- \(U \Sigma \): Gives the coordinates of the points in the projection axis

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 & 0 \\
0 & 0 & 0 & 5 & 5 & 0 \\
0 & 1 & 0 & 0 & 2 & 2
\end{bmatrix}
\]

Projection of users on the “Sci-Fi” axis

\[
\begin{bmatrix}
1.61 & 0.19 & -0.01 \\
5.08 & 0.66 & -0.03 \\
6.82 & 0.85 & -0.05 \\
8.43 & 1.04 & -0.06 \\
1.86 & -5.60 & 0.84 \\
0.86 & -6.93 & -0.87 \\
0.86 & -2.75 & 0.41
\end{bmatrix}
\]
More details

Q: How is dim. reduction done?

\[
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2
\end{bmatrix}
\begin{bmatrix}
0.13 & 0.02 & -0.01 \\
0.41 & 0.07 & -0.03 \\
0.55 & 0.09 & -0.04 \\
0.68 & 0.11 & -0.05 \\
0.15 & -0.59 & 0.65 \\
0.07 & -0.73 & -0.67 \\
0.07 & -0.29 & 0.32
\end{bmatrix}
\begin{bmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.3
\end{bmatrix}
\]
\[
\begin{bmatrix}
0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\
0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\
0.40 & -0.80 & 0.40 & 0.09 & 0.09
\end{bmatrix}
\]
More details

Q: How exactly is dim. reduction done?
A: Set smallest singular values to zero
More details

- **Q:** How exactly is dim. reduction done?
- **A:** Set smallest singular values to zero

$$
\begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2
\end{bmatrix}
\approx
\begin{bmatrix}
0.13 & 0.02 & -0.01 \\
0.41 & 0.07 & -0.03 \\
0.55 & 0.09 & -0.04 \\
0.68 & 0.11 & -0.05 \\
0.15 & -0.59 & 0.65 \\
0.07 & -0.73 & -0.67 \\
0.07 & -0.29 & 0.32
\end{bmatrix}
\times
\begin{bmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 3
\end{bmatrix}
\times
\begin{bmatrix}
0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\
0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\
0.40 & -0.80 & 0.40 & 0.09 & 0.09
\end{bmatrix}
More details

- **Q:** How exactly is dim. reduction done?
- **A:** Set smallest singular values to zero

This is Rank 2 approximation to A. We could also do Rank 1 approx. The larger the rank the more accurate the approximation.
More details

- **Q:** How exactly is dim. reduction done?
- **A:** Set smallest singular values to zero

This is Rank 2 approximation to A. We could also do Rank 1 approx. The larger the rank the more accurate the approximation.
More details

Q: How exactly is dim. reduction done?

A: Set smallest singular values to zero

Reconstruction Error is quantified by the Frobenius norm:

$$\|M\|_F = \sqrt{\sum_{ij} M_{ij}^2}$$

$$\|A-B\|_F = \sqrt{\sum_{ij} (A_{ij}-B_{ij})^2}$$

is “small”
Fact: SVD gives ‘best’ axis to project on:

- ‘best’ = minimizing the sum of reconstruction errors

\[
\|A - B\|_F = \sqrt{\sum_{ij} (A_{ij} - B_{ij})^2}
\]

\[
A = U \Sigma V^T
\]

\[
B = U \Sigma V^T
\]

B is best approximation of A:
Theorem:

Let \(A = U \Sigma V^T \) and \(B = U S V^T \) where \(S = \text{diagonal} \ r \times r \text{ matrix} \) with \(s_i = \sigma_i \) \((i=1...k)\) else \(s_i = 0 \) then \(B \) is a **best** \(\text{rank}(B) = k \approx \text{approx. to} \ A \)

What do we mean by “best”:

- \(B \) is a solution to \(\min_B \|A - B\|_F \) where \(\text{rank}(B) = k \)

\[
\begin{pmatrix}
x_{11} & x_{12} & \cdots & x_{1n} \\
x_{21} & x_{22} & \cdots & x_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m1} & x_{m2} & \cdots & x_{mn}
\end{pmatrix}
=
\begin{pmatrix}
u_{11} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
u_{m1} & \cdots & 0
\end{pmatrix}
\begin{pmatrix}
\Sigma \\
0 \\
\vdots \\
0
\end{pmatrix}
\begin{pmatrix}
v_{11} & \cdots & v_{1n}
\end{pmatrix}
\]

Refer to the MMDS book for a proof.

\[
\|A - B\|_F = \sqrt{\sum_{ij} (A_{ij} - B_{ij})^2}
\]
SVD – Conclusions so far

- **SVD:** $A = U \Sigma V^T$: unique
 - U: user-to-concept factors
 - V: movie-to-concept factors
 - Σ: strength of each concept

- **Q:** So what’s a good value for r (# of latent factors)?
 - Let the *energy* of a set of singular values be the sum of their squares.
 - Pick r so the retained singular values have at least 90% of the total energy.

- **Back to our example:**
 - With singular values 12.4, 9.5, and 1.3, total energy = 245.7
 - If we drop 1.3, whose square is only 1.7, we are left with energy 244, or over 99% of the total
How to Compute SVD
How do we actually compute SVD?

First we need a method for finding the principal eigenvalue (the largest one) and the corresponding eigenvector of a symmetric matrix

- M is *symmetric* if $m_{ij} = m_{ji}$ for all i and j

Method:

- Start with any “guess eigenvector” x_0

- Construct $x_{k+1} = \frac{Mx_k}{\|Mx_k\|}$ for $k = 0, 1, \ldots$
 - $\| \ldots \|$ denotes the Frobenius norm

- Stop when consecutive x_k show little change
Example: Iterative Eigenvector

\[
M = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} \quad x_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

\[
\frac{Mx_0}{||Mx_0||} = \frac{\begin{pmatrix} 3 \\ 5 \end{pmatrix}}{\sqrt{34}} = \begin{pmatrix} 0.51 \\ 0.86 \end{pmatrix} = x_1
\]

\[
\frac{Mx_1}{||Mx_1||} = \frac{\begin{pmatrix} 2.23 \\ 3.60 \end{pmatrix}}{\sqrt{17.93}} = \begin{pmatrix} 0.53 \\ 0.85 \end{pmatrix} = x_2
\]

.....
Once you have the principal eigenvector \mathbf{x}, you find its eigenvalue λ by $\lambda = \mathbf{x}^T \mathbf{M} \mathbf{x}$.

- **In proof**: We know $\mathbf{x}\lambda = \mathbf{M}\mathbf{x}$ if λ is the eigenvalue; multiply both sides by \mathbf{x}^T on the left.
- Since $\mathbf{x}^T\mathbf{x} = 1$ we have $\lambda = \mathbf{x}^T \mathbf{M} \mathbf{x}$

Example: If we take $\mathbf{x}^T = [0.53, 0.85]$, then

$$\lambda = [0.53 \ 0.85] \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 0.53 \\ 0.85 \end{bmatrix} = 4.25$$
Finding More Eigenpairs

- Eliminate the portion of the matrix M that can be generated by the first eigenpair, λ and x:
 \[M^* := M - \lambda x x^T \]
- Recursively find the principal eigenpair for M^*, eliminate the effect of that pair, and so on

Example:

\[
M^* = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} - 4.25 \begin{bmatrix} 0.53 \\ 0.85 \end{bmatrix} \begin{bmatrix} 0.53 & 0.85 \end{bmatrix} = \begin{bmatrix} -0.19 & 0.09 \\ 0.09 & 0.07 \end{bmatrix}
\]
How to Compute the SVD

- Start by supposing $A = U\Sigma V^T$
- $A^T = (U\Sigma V^T)^T = (V^T)^T \Sigma^T U^T = V \Sigma U^T$
 - Why? (1) Rule for transpose of a product; (2) the transpose of the transpose and the transpose of a diagonal matrix are both the identity functions

- $A^T A = V \Sigma U^T U \Sigma V^T = V \Sigma^2 V^T$
 - Why? U is orthonormal, so $U^T U$ is an identity matrix
 - Also note that Σ^2 is a diagonal matrix whose i-th element is the square of the i-th element of Σ

- $A^T AV = V \Sigma^2 V^T V = V \Sigma^2$
 - Why? V is also orthonormal
Since \(A^T A = V \Sigma^2 V^T \rightarrow A^T A V = V \Sigma^2 \)

- **Note** that therefore the \(i \)-th column of \(V \) is an eigenvector of \(A^T A \), and its eigenvalue is the \(i \)-th element of \(\Sigma^2 \)

Thus, we can find \(V \) and \(\Sigma \) by finding the eigenpairs for \(A^T A \)

- Once we have the eigenvalues in \(\Sigma^2 \), we can find the singular values by taking the square root of these eigenvalues

- Symmetric argument, \(A A^T \) gives us \(U \)
To compute the full SVD using specialized methods:
- \(O(nm^2)\) or \(O(n^2m)\) (whichever is less)

But:
- Less work, if we just want singular values
- or if we want the first \(k\) singular vectors
- or if the matrix is sparse

Implemented in linear algebra packages like
- LINPACK, Matlab, SPlus, Mathematica ...
Example of SVD
Case study: How to query?

- Q: Find users that like ‘Matrix’
- A: Map query into a ‘concept space’ – how?

\[
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 \\
3 & 3 & 3 & 0 & 0 \\
4 & 4 & 4 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
0 & 2 & 0 & 4 & 4 \\
0 & 0 & 0 & 5 & 5 \\
0 & 1 & 0 & 2 & 2 \\
\end{pmatrix}
=
\begin{pmatrix}
0.13 & 0.02 & -0.01 \\
0.41 & 0.07 & -0.03 \\
0.55 & 0.09 & -0.04 \\
0.68 & 0.11 & -0.05 \\
0.15 & -0.59 & 0.65 \\
0.07 & -0.73 & -0.67 \\
0.07 & -0.29 & 0.32 \\
\end{pmatrix}
\times
\begin{pmatrix}
12.4 & 0 & 0 \\
0 & 9.5 & 0 \\
0 & 0 & 1.3 \\
\end{pmatrix}
\times
\begin{pmatrix}
0.56 & 0.59 & 0.56 & 0.09 & 0.09 \\
0.12 & -0.02 & 0.12 & -0.69 & -0.69 \\
0.40 & -0.80 & 0.40 & 0.09 & 0.09 \\
\end{pmatrix}
\]
Q: Find users that like ‘Matrix’

A: Map query into a ‘concept space’ – how?

Project into concept space:
Inner product with each ‘concept’ vector v_i
Case study: How to query?

- Q: Find users that like ‘Matrix’
- A: Map query into a ‘concept space’ – how?

Project into concept space:
Inner product with each ‘concept’ vector \(v_i \)
Compactly, we have:

\[q_{\text{concept}} = q \ V \]

E.g.:

\[
\begin{bmatrix}
5 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0.56 & 0.12 \\
0.59 & -0.02 \\
0.56 & 0.12 \\
0.09 & -0.69 \\
0.09 & -0.69
\end{bmatrix}
= \begin{bmatrix}
2.8 \\
0.6
\end{bmatrix}
\]

movie-to-concept factors (V)

SciFi-concept
How would the user d that rated ('Alien', 'Serenity') be handled?

$$d_{\text{concept}} = d \cdot V$$

E.g.:

$$d = \begin{bmatrix} 0 & 4 & 5 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 0.56 & 0.12 & 0.59 & -0.02 & 0.09 & -0.69 & 0.09 & -0.69 \end{bmatrix} x \begin{bmatrix} 0.56 & 0.12 & 0.59 & -0.02 & 0.09 & -0.69 & 0.09 & -0.69 \end{bmatrix}$$

SciFi-concept

$$= \begin{bmatrix} 5.2 & 0.4 \end{bmatrix}$$
Observation: User d that rated (‘Alien’, ‘Serenity’) will be similar to user q that rated (‘Matrix’), although d and q have zero ratings in common!

$d = \begin{bmatrix} 0 & 4 & 5 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 \end{bmatrix}$

$q = \begin{bmatrix} 0 & 4 & 5 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 \end{bmatrix}$
SVD: Drawbacks

+ **Optimal low-rank approximation** in terms of Frobenius norm

- **Interpretability problem:**
 - A singular vector specifies a linear combination of all input columns or rows

- **Lack of sparsity:**
 - Singular vectors are dense!

\[
\begin{bmatrix}
U \\
\Sigma \\
V^T
\end{bmatrix} =
\begin{bmatrix}
\end{bmatrix}
\]
CUR Decomposition
Sparsity

- It is common for the matrix A that we wish to decompose to be very sparse.

- But U and V from a SVD decomposition will not be sparse.

- CUR decomposition solves this problem by using only (randomly chosen) rows and columns of A.
Goal: Express A as a product of matrices C, U, R

Make $\|A - C \cdot U \cdot R\|_F$ small

“Constraints” on C and R:

\[
\begin{pmatrix}
\end{pmatrix} \approx \begin{pmatrix}
\end{pmatrix} \cdot \begin{pmatrix}
\end{pmatrix} \cdot \begin{pmatrix}
\end{pmatrix}
\]

\[
A \quad C \quad U \quad R
\]

Frobenius norm:

\[
\|X\|_F = \sqrt{\sum_{ij} X_{ij}^2}
\]
Goal: Express A as a product of matrices C, U, R

Make $\|A - C \cdot U \cdot R\|_F$ small

“Constraints” on C and R:

Frobenius norm:
$$\|X\|_F = \sqrt{\sum_{ij} X_{ij}^2}$$
Let W be the “intersection” of sampled columns C and rows R.

Def: W^+ is the pseudoinverse.

- Let SVD of $W = X Z Y^T$.
- Then: $W^+ = Y Z^+ X^T$.
 - Z^+: reciprocals of non-zero singular values: $Z^+_{ii} = 1/Z_{ii}$.

Let: $U = Y (Z^+)^2 X^T$.

Why the intersection? These are high magnitude numbers.

Why pseudoinverse works?

$W = X Z Y^T$ then $W^{-1} = (Y^T)^{-1} Z^{-1} X^{-1}$

Due to orthonormality: $X^{-1} = X^T$, $Y^{-1} = Y^T$

Since Z is diagonal $Z^{-1} = 1/Z_{ii}$

Thus, if W is nonsingular, pseudoinverse is the true inverse.
To decrease the expected error between A and its decomposition, we must pick rows and columns in a nonuniform manner.

The **importance** of a row or column of A is the square of its Frobenius norm.

- That is, the sum of the squares of its elements.
- When picking rows and columns, the probabilities must be proportional to importance.

Example: $[3,4,5]$ has importance 50, and $[3,0,1]$ has importance 10, so pick the first 5 times as often as the second.
Sampling columns (similarly for rows):

Input: matrix $A \in \mathbb{R}^{m \times n}$, sample size c

Output: $C_d \in \mathbb{R}^{m \times c}$

1. for $x = 1 : n$ [column distribution]
2. \[
 P(x) = \frac{\sum_i A(i, x)^2}{\sum_{i,j} A(i, j)^2}
\]
3. for $i = 1 : c$ [sample columns]
4. Pick $j \in 1 : n$ based on distribution $P(x)$
5. Compute $C_d(:, i) = A(:, j) / \sqrt{cP(j)}$

Note this is a randomized algorithm, same column can be sampled more than once.
Rough and imprecise intuition behind CUR

- CUR is more likely to pick points away from the origin
 - Assuming smooth data with no outliers these are the directions of maximum variation

Example: Assume we have 2 clouds at an angle

- SVD dimensions are orthogonal and thus will be in the middle of the two clouds
- CUR will find the two clouds (but will be redundant)
For example:

- Select $c = \mathcal{O} \left(\frac{k \log k}{\varepsilon^2} \right)$ columns of A using ColumnSelect algorithm (slide 56)

- Select $r = \mathcal{O} \left(\frac{k \log k}{\varepsilon^2} \right)$ rows of A using RowSelect algorithm (slide 56)

- Set $U = Y (Z^+)^2 X^T$

Then:

$$
\|A - CUR\|_F \leq (2 + \varepsilon) \|A - A_K\|_F
$$

with probability 98%

In practice: Pick $4k$ cols/rows for a “rank-k” approximation
CUR: Pros & Cons

+ Easy interpretation
 - Since the basis vectors are actual columns and rows

+ Sparse basis
 - Since the basis vectors are actual columns and rows

- Duplicate columns and rows
 - Columns of large norms will be sampled many times
SVD vs. CUR

SVD: \[A = U \Sigma V^T \]

Huge but sparse \quad Big and dense

CUR: \[A = CUR \]

Huge but sparse \quad Big but sparse

sparse and small

dense but small
DBLP bibliographic data

- Author-to-conference big sparse matrix
- A_{ij}: Number of papers published by author i at conference j
- 428K authors (rows), 3659 conferences (columns)
 - Very sparse

Want to reduce dimensionality

- How much time does it take?
- What is the reconstruction error?
- How much space do we need?
Results: DBLP- big sparse matrix

- **Accuracy:**
 - 1 – relative sum squared errors
- **Space ratio:**
 - #output matrix entries / #input matrix entries
- **CPU time**

Sun, Faloutsos: *Less is More: Compact Matrix Decomposition for Large Sparse Graphs*, SDM ’07.