Recommender Systems: Content-based Systems & Collaborative Filtering

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu
High Dimensional Data

- High dim. data
 - Locality sensitive hashing
 - Clustering
 - Dimensionality reduction

- Graph data
 - Community Detection
 - Spam Detection

- Infinite data
 - Filtering
 - Web advertising
 - Queries on streams

- Machine learning
 - Decision Trees
 - Perceptron, kNN

- Apps
 - Recommender systems
 - Association Rules
 - Duplicate document detection
Example: Recommender Systems

- **Customer X**
 - Buys Metallica CD
 - Buys Megadeth CD

- **Customer Y**
 - Does search on Metallica
 - Recommender system suggests Megadeth from data collected about customer X
Recommendations

Examples:
- Amazon.com
- Pandora
- StumbleUpon
- Netflix
- Pinterest
- Google News
- Last.fm
- YouTube
- Xbox Live

Search → Recommendations

Items

Products, web sites, blogs, news items, …
Shelf space is a scarce commodity for traditional retailers
- Also: TV networks, movie theaters,…

Web enables near-zero-cost dissemination of information about products
- From scarcity to abundance

More choice necessitates better filters:
- Recommendation engines
- Association rules: How *Into Thin Air* made *Touching the Void* a bestseller:
 - http://www.wired.com/wired/archive/12.10/tail.html
Sidenote: The Long Tail

Source: Chris Anderson (2004)
Physical vs. Online

Read http://www.wired.com/wired/archive/12.10/tail.html to learn more!
Types of Recommendations

- **Editorial and hand curated**
 - List of favorites
 - Lists of “essential” items

- **Simple aggregates**
 - Top 10, Most Popular, Recent Uploads

- **Tailored to individual users**
 - Amazon, Netflix, ...
Formal Model

- $X = \text{set of Customers}$
- $S = \text{set of Items}$

- **Utility function** $u: X \times S \rightarrow R$
 - $R = \text{set of ratings}$
 - R is a totally ordered set
 - e.g., 1-5 stars, real number in $[0,1]$
Utility Matrix

<table>
<thead>
<tr>
<th></th>
<th>Avatar</th>
<th>LOTR</th>
<th>Matrix</th>
<th>Pirates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>0.5</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td>0.2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>David</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
</tbody>
</table>
Key Problems

- **(1) Gathering “known” ratings for matrix**
 - How to collect the data in the utility matrix

- **(2) Extrapolating unknown ratings from the known ones**
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don’t like but what you like

- **(3) Evaluating extrapolation methods**
 - How to measure success/performance of recommendation methods
(1) Gathering Ratings

- **Explicit**
 - Ask people to rate items
 - Doesn’t work well in practice – people don’t like being bothered
 - Crowdsourcing: Pay people to label items

- **Implicit**
 - Learn ratings from user actions
 - E.g., purchase implies high rating
 - What about low ratings?
Key problem: Utility matrix U is sparse
- Most people have not rated most items
- Cold start:
 - New items have no ratings
 - New users have no history

Three approaches to recommender systems:
- 1) Content-based
- 2) Collaborative
- 3) Latent factor based

Today!
Content-based Recommender Systems
Main idea: Recommend items to customer \(x \) similar to previous items rated highly by \(x \)

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...

- Websites, blogs, news
 - Recommend other sites with “similar” content
Plan of Action

Item profiles

likes

match

build

recommend

User profile

Red Circles

Triangles

1/28/19
Jure Leskovec, Stanford CS246: Mining Massive Datasets
Item Profiles

- For each item, create an item profile

- Profile is a set (vector) of features
 - Movies: author, title, actor, director,…
 - Text: Set of “important” words in document

- How to pick important features?
 - Usual heuristic from text mining is TF-IDF
 (Term frequency * Inverse Doc Frequency)
 - Term … Feature
 - Document … Item
Sidenote: TF-IDF

$$f_{ij} = \text{frequency of term (feature) } i \text{ in doc (item) } j$$

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

$$n_i = \text{number of docs that mention term } i$$

$$N = \text{total number of docs}$$

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $$w_{ij} = TF_{ij} \times IDF_i$$

Doc profile = set of words with highest TF-IDF scores, together with their scores

Note: we normalize TF to discount for “longer” documents
User Profiles and Prediction

- **User profile possibilities:**
 - Weighted average of rated item profiles
 - **Variation:** weight by difference from average rating for item

- **Prediction heuristic: Cosine similarity of user and item profiles**
 - Given user profile x and item profile i, estimate
 \[
 u(x, i) = \cos(x, i) = \frac{x \cdot i}{\|x\| \cdot \|i\|}
 \]

- **How do you quickly find items closest to x?**
 - Job for LSH!
Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended
Cons: Content-based Approach

- Finding the appropriate features is hard
 - E.g., images, movies, music
- Recommendations for new users
 - How to build a user profile?
- Overspecialization
 - Never recommends items outside user’s content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users
Collaborative Filtering

Harnessing quality judgments of other users
Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are “similar” to x’s ratings
- Estimate x’s ratings based on ratings of users in N
Finding “Similar” Users

- Let \(r_x \) be the vector of user \(x \)'s ratings
- **Jaccard similarity measure**
 - **Problem**: Ignores the value of the rating
- **Cosine similarity measure**
 - \[\text{sim}(x, y) = \cos(r_x, r_y) = \frac{r_x \cdot r_y}{\|r_x\| \cdot \|r_y\|} \]
 - **Problem**: Treats some missing ratings as “negative”
- **Pearson correlation coefficient**
 - \(S_{xy} = \) items rated by both users \(x \) and \(y \)
 - \[
 \text{sim}(x, y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})(r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}
 \]
 - \(\overline{r_x}, \overline{r_y} \) ... avg. rating of \(x, y \)

\[\begin{align*}
 r_x &= [* , _, _, * , ***] \\
 r_y &= [* , _, ** , ** , _]
\end{align*} \]
Similarity Metric

Intuitively we want: \(\text{sim}(A, B) > \text{sim}(A, C) \)

Jaccard similarity: \(\frac{1}{5} < \frac{2}{4} \)

Cosine similarity: \(0.380 > 0.322 \)

- Considers missing ratings as “negative”

- **Solution: subtract the (row) mean**

\[
\begin{align*}
\text{sim } A,B \text{ vs. } A,C: & \quad 0.092 > -0.559 \\
\text{Notice cosine sim. is correlation when data is centered at 0}
\end{align*}
\]
From similarity metric to recommendations:

- Let r_x be the vector of user x’s ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item i of user x:
 \[
 r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}
 \]
 \[
 \text{Or even better: } r_{xi} = \frac{\sum_{y \in N} s_{xy} r_{yi}}{\sum_{y \in N} s_{xy}}
 \]

- Many other tricks possible...
So far: **User-user collaborative filtering**

Another view: Item-item

- For item i, find other similar items
- Estimate rating for item i based on ratings for similar items
- Can use same similarity metrics and prediction functions as in user-user model

$$ r_{xi} = \frac{\sum_{j \in N(i; x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i; x)} s_{ij}} $$

s_{ij} — similarity of items i and j
r_{xj} — rating of user x on item j
$N(i; x)$ — set items which were rated by x and similar to i
Item-Item CF ($|N| = 2$)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td></td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **users**
- **movies**

- **unknown rating**
- **rating between 1 to 5**

1/28/19
Jure Leskovec, Stanford CS246: Mining Massive Datasets
Item-Item CF ($|N| = 2$)

<table>
<thead>
<tr>
<th>movies</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>?</td>
<td>?</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- estimate rating of movie 1 by user 5
Item-Item CF ($|N| = 2$)

Neighbor selection:
Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:
1) Subtract mean rating m_i from each movie i

 $$m_1 = \frac{(1+3+5+5+4)}{5} = 3.6$$

 row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute dot products between rows
Item-Item CF (|N|=2)

Users

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td>?</td>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>S1,m</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>-0.18</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td>3</td>
<td>4</td>
<td>3</td>
<td></td>
<td>5</td>
<td>0.41</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td></td>
<td>5</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>-0.10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td>5</td>
<td></td>
<td>-0.31</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>0.59</td>
</tr>
</tbody>
</table>

Movies

Compute similarity weights:

\[s_{1,3} = 0.41, \quad s_{1,6} = 0.59 \]
Item-Item CF (|N|=2)

<table>
<thead>
<tr>
<th>movies</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2.6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Predict by taking weighted average:

\[
r_{1.5} = \frac{(0.41 \times 2 + 0.59 \times 3)}{(0.41 + 0.59)} = 2.6
\]

\[
r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}
\]
Define similarity s_{ij} of items i and j

Select k nearest neighbors $N(i; x)$

- Items most similar to i, that were rated by x

Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i; x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i; x)} S_{ij}}$$

Baseline estimate for r_{xi}

$$b_{xi} = \mu + b_x + b_i$$

- μ = overall mean movie rating
- b_x = rating deviation of user x
 = (avg. rating of user x) − μ
- b_i = rating deviation of movie i
Item-Item vs. User-User

<table>
<thead>
<tr>
<th></th>
<th>Avatar</th>
<th>LOTR</th>
<th>Matrix</th>
<th>Pirates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>1</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob</td>
<td>0.5</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carol</td>
<td>0.9</td>
<td>1</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>David</td>
<td></td>
<td>1</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

- In practice, it has been observed that **item-item** often works better than **user-user**
- **Why?** Items are simpler, users have multiple tastes
Pros/Cons of Collaborative Filtering

- **Works for any kind of item**
 - No feature selection needed
- **Cold Start:**
 - Need enough users in the system to find a match
- **Sparsity:**
 - The user/ratings matrix is sparse
 - Hard to find users that have rated the same items
- **First rater:**
 - Cannot recommend an item that has not been previously rated
 - New items, Esoteric items
- **Popularity bias:**
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items
Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model

- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem
Remarks & Practical Tips

- Evaluation
- Error metrics
- Complexity / Speed
Evaluation

<table>
<thead>
<tr>
<th>users</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

movies

1 3 4
3 5 5
4 5 5
3
3
2 2 2
2
2 1 1
3
1
1
Evaluation

![Matrix Diagram]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Data Set
Evaluating Predictions

- **Compare predictions with known ratings**
 - **Root-mean-square error (RMSE)**
 \[\sqrt{\frac{1}{N} \sum_{xi} (r_{xi} - r_{xi}^*)^2} \]
 where \(r_{xi} \) is predicted, \(r_{xi}^* \) is the true rating of \(x \) on \(i \)
 - \(N \) is the number of points we are making comparisons on
 - **Precision at top 10:**
 - % of those in top 10
 - **Rank Correlation:**
 - Spearman’s correlation between system’s and user’s complete rankings

- **Another approach: 0/1 model**
 - **Coverage:**
 - Number of items/users for which the system can make predictions
 - **Precision:**
 - Accuracy of predictions
 - **Receiver operating characteristic (ROC)**
 - Tradeoff curve between false positives and false negatives
Problems with Error Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others
Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: $O(|X|)$
- Too expensive to do at runtime
 - Could pre-compute
 - Naïve pre-computation takes time $O(k \cdot |X|)$
 - X ... set of customers
- We already know how to do this!
 - Near-neighbor search in high dimensions (LSH)
 - Clustering
 - Dimensionality reduction
Tip: Add Data

- Leverage all the data
 - Don’t try to reduce data size in an effort to make fancy algorithms work
 - Simple methods on large data do best

- Add more data
 - e.g., add IMDB data on genres

- More data beats better algorithms
 http://anand.typepad.com/datawocky/2008/03/more-data-usual.html
On Thursday: The Netflix prize and the Latent Factor Models
On Thursday: The Netflix Prize

- **Training data**
 - 100 million ratings, 480,000 users, 17,770 movies
 - 6 years of data: 2000-2005

- **Test data**
 - Last few ratings of each user (2.8 million)
 - Evaluation criterion: root mean squared error (RMSE)
 - Netflix Cinematch RMSE: 0.9514

- **Competition**
 - 2700+ teams
 - $1 million prize for 10% improvement on Cinematch
On Thursday: Latent Factor Models

- **Next topic:** Recommendations via Latent Factor models

The bubbles above represent products sized by sales volume. Products close to each other are recommended to each other.