New Topic: Graph Data!

High dim. data
- Locality sensitive hashing
- Clustering
- Dimensionality reduction

Graph data
- PageRank, SimRank
- Community Detection
- Spam Detection

Infinite data
- Filtering data streams
- Web advertising
- Queries on streams

Machine learning
- SVM
- Decision Trees
- Perceptron, kNN

Apps
- Recommender systems
- Association Rules
- Duplicate document detection
Graph Data: Social Networks

Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
Citation networks and Maps of science
[Börner et al., 2012]
Graph Data: Communication Networks

Internet
Seven Bridges of Königsberg

[Euler, 1735]

Return to the starting point by traveling each link of the graph once and only once.
Web as a directed graph:

- **Nodes**: Webpages
- **Edges**: Hyperlinks

I teach a class on Networks.

CS224W: Classes are in the Gates building

Computer Science Department at Stanford

Stanford University
Web as a directed graph:

- **Nodes:** Webpages
- **Edges:** Hyperlinks

I teach a class on Networks.

CS224W: Classes are in the Gates building.

Computer Science Department at Stanford.

Stanford University.
How to organize the Web?

First try: Human curated Web directories
- Yahoo, DMOZ, LookSmart

Second try: Web Search
- Information Retrieval investigates:
 Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
- But: Web is huge, full of untrusted documents, random things, web spam, etc.
Web Search: 2 Challenges

2 challenges of web search:

- (1) Web contains many sources of information
 Who to “trust”?
 - Trick: Trustworthy pages may point to each other!

- (2) What is the “best” answer to query
 “newspaper”?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers
All web pages are not equally “important”
thispersondoesnotexist.com vs. www.stanford.edu

There is a large diversity in the web-graph node connectivity.
Let’s rank the pages by the link structure!
Link Analysis Algorithms

- We will cover the following Link Analysis approaches for computing importances of nodes in a graph:
 - Page Rank
 - Topic-Specific (Personalized) Page Rank
 - Web Spam Detection Algorithms
PageRank: The “Flow” Formulation
Links as Votes

- **Idea: Links as votes**
 - Page is more important if it has more links
 - In-coming links? Out-going links?

- **Think of in-links as votes:**
 - www.stanford.edu has millions in-links
 - thispersondoesnotexist.com has a few thousands in-link

- **Are all in-links equal?**
 - Links from important pages count more
 - Recursive question!
Web pages are important if people visit them a lot.

But we can’t watch everybody using the Web.

A good surrogate for visiting pages is to assume people follow links randomly.

Leads to random surfer model:

- Start at a random page and follow random out-links repeatedly, from whatever page you are at.

PageRank = limiting probability of being at a page.
Intuition – (2)

- **Solve the recursive equation:** “importance of a page = its share of the importance of each of its predecessor pages”
 - Equivalent to the random-surfer definition of PageRank

- Technically, **importance** = the principal eigenvector of the transition matrix of the Web
 - A few fix-ups needed
Example: PageRank Scores

Graph showing node connections:
- Node A with score 3.3
- Node B with score 38.4
- Node C with score 34.3
- Node D with score 3.9
- Node E with score 8.1
- Node F with score 3.9

Connections and scores:
- A to D: 1.6
- A to E: 1.6
- B to C: 1.6
- B to E: 1.6
- C to E: 1.6
- C to F: 1.6
- D to B: 1.6
- D to C: 1.6
- D to E: 1.6
- D to F: 1.6
- E to B: 1.6
- E to D: 1.6
- E to F: 1.6
- F to C: 1.6
- F to D: 1.6
- F to E: 1.6
Each link’s vote is proportional to the importance of its source page.

If page j with importance r_j has n out-links, each link gets r_j / n votes.

Page j’s own importance is the sum of the votes on its in-links.

$$r_j = r_i/3 + r_k/4$$
A “vote” from an important page is worth more

A page is important if it is pointed to by other important pages

Define a “rank” r_j for page j

$$r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$$

d_i … out-degree of node i

“Flow” equations:
- $r_y = \frac{r_y}{2} + \frac{r_a}{2}$
- $r_a = \frac{r_y}{2} + r_m$
- $r_m = \frac{r_a}{2}$
Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:
 - \(r_y + r_a + r_m = 1 \)
 - Solution: \(r_y = \frac{2}{5}, \ r_a = \frac{2}{5}, \ r_m = \frac{1}{5} \)
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

Flow equations:
\[
\begin{align*}
 r_y &= r_y/2 + r_a/2 \\
 r_a &= r_y/2 + r_m \\
 r_m &= r_a/2
\end{align*}
\]
PageRank: Matrix Formulation

- **Stochastic adjacency matrix** M
 - Let page i has d_i out-links
 - If $i \rightarrow j$, then $M_{ji} = \frac{1}{d_i}$, else $M_{ji} = 0$
 - M is a **column stochastic matrix**
 - Columns sum to 1
- **Rank vector** r: vector with an entry per page
 - r_i is the importance score of page i
 - $\sum_i r_i = 1$
- The flow equations can be written
 $$ r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} $$
 $$ r = M \cdot r $$
Example

- Remember the flow equation: \(r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} \)
- Flow equation in the matrix form: \(M \cdot r = r \)
- Suppose page \(i \) links to 3 pages, including \(j \)

\[
\begin{align*}
M & \cdot r = r \\
\end{align*}
\]

![Diagram showing the flow equation in matrix form]
Example: Flow Equations & M

\[r = M \cdot r \]

\[r_y = \frac{r_y}{2} + \frac{r_a}{2} \]
\[r_a = \frac{r_y}{2} + \frac{r_m}{2} \]
\[r_m = \frac{r_a}{2} \]
The flow equations can be written

\[r = M \cdot r \]

So the rank vector \(r \) is an eigenvector of the stochastic web matrix \(M \)

- Starting from any vector \(u \), the limit \(M(M(...M(M \cdot u))...) \) is the long-term distribution of the surfers.
 - The math: limiting distribution = principal eigenvector of \(M = \text{PageRank} \).
 - Note: If \(r \) is the limit of \(M \cdot M \cdot ... \cdot M \cdot u \), then \(r \) satisfies the equation \(r = M \cdot r \), so \(r \) is an eigenvector of \(M \) with eigenvalue 1

We can now efficiently solve for \(r \)!

The method is called Power iteration

NOTE: \(x \) is an eigenvector with the corresponding eigenvalue \(\lambda \) if:

\[Ax = \lambda x \]
Power Iteration Method

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- **Power iteration**: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $r^{(0)} = [1/N,\ldots,1/N]^T$
 - Iterate: $r^{(t+1)} = M \cdot r^{(t)}$
 - Stop when $|r^{(t+1)} - r^{(t)}|_1 < \varepsilon$
 - $|x|_1 = \sum_{1 \leq i \leq N} |x_i|$ is the L_1 norm
 - Can use any other vector norm, e.g., Euclidean

 $$r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i}$$
 d_i out-degree of node i

About 50 iterations is sufficient to estimate the limiting solution.
Power Iteration:
- Set $r_j = 1/N$
- 1: $r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
- 2: $r = r'$
- Goto 1

Example:

\[
\begin{pmatrix}
 r_y \\
 r_a \\
 r_m
\end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix}
\]

Iteration 0, 1, 2, …
Power Iteration:
- Set $r_j = 1/N$
- 1: $r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
- 2: $r = r'$
- Goto 1

Example:

\[
\begin{align*}
\begin{pmatrix}
 r_y \\
 r_a \\
 r_m
\end{pmatrix} &=
\begin{pmatrix}
 1/3 & 1/3 & 5/12 & 9/24 & 6/15 \\
 1/3 & 3/6 & 1/3 & 11/24 & \ldots & 6/15 \\
 1/3 & 1/6 & 3/12 & 1/6 & 3/15
\end{pmatrix}
\]

Iteration 0, 1, 2, …
Random Walk Interpretation

- Imagine a random web surfer:
 - At any time t, surfer is on some page i
 - At time $t + 1$, the surfer follows an out-link from i uniformly at random
 - Ends up on some page j linked from i
 - Process repeats indefinitely

- Let:
 - $p(t)$... vector whose i^{th} coordinate is the prob. that the surfer is at page i at time t
 - So, $p(t)$ is a probability distribution over pages

$$r_j = \sum_{i \rightarrow j} \frac{r_i}{d_{out}(i)}$$
The Stationary Distribution

- Where is the surfer at time $t+1$?
 - Follows a link uniformly at random
 \[p(t + 1) = M \cdot p(t) \]
- Suppose the random walk reaches a state
 \[p(t + 1) = M \cdot p(t) = p(t) \]
 then $p(t)$ is **stationary distribution** of a random walk
- Our original rank vector r satisfies
 \[r = M \cdot r \]
 - So, r is a stationary distribution for the random walk
A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what is the initial probability distribution at time $t = 0$.
PageRank: The Google Formulation
PageRank: Three Questions

\[r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i} \]

or equivalently

\[r = Mr \]

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?
Does this converge?

Example:

\[
\begin{align*}
 r_a &= 1 \quad 0 \quad 1 \quad 0 \\
 r_b &= 0 \quad 1 \quad 0 \quad 1
\end{align*}
\]

Iteration 0, 1, 2, …

\[
r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i}
\]
Does it converge to what we want?

Example:

\[
\begin{align*}
\mathbf{r}_a &= 1 \quad 0 \quad 0 \quad 0 \quad 0 \\
\mathbf{r}_b &= 0 \quad 1 \quad 0 \quad 0 \quad 0 \\
\end{align*}
\]

Iteration 0, 1, 2, ...
PageRank: Problems

2 problems:

- (1) Dead ends: Some pages have no out-links
 - Random walk has “nowhere” to go to
 - Such pages cause importance to “leak out”

- (2) Spider traps: (all out-links are within the group)
 - Random walk gets “stuck” in a trap
 - And eventually spider traps absorb all importance
Problem: Spider Traps

- **Power Iteration:**
 - Set $r_j = 1$
 - $r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - And iterate

- **Example:**

 $\begin{pmatrix} r_y \\ r_a \\ r_m \end{pmatrix} = \begin{pmatrix} 1/3 & 2/6 & 3/12 & 5/24 & 0 \\ 1/3 & 1/6 & 2/12 & 3/24 & \ldots & 0 \\ 1/3 & 3/6 & 7/12 & 16/24 & 1 \end{pmatrix}$

 Iteration 0, 1, 2, …

 All the PageRank score gets “trapped” in node m.

- $r_y = \frac{r_y}{2} + \frac{r_a}{2}$
 - $r_a = \frac{r_y}{2}$
 - $r_m = \frac{r_a}{2} + r_m$
Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β, follow a link at random
 - With prob. $1-\beta$, jump to some random page
 - β is typically in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps
Problem: Dead Ends

- **Power Iteration:**
 - Set $r_j = 1$
 - $r_j = \sum_{i\to j} \frac{r_i}{d_i}$
 - And iterate

- **Example:**

\[
\begin{bmatrix}
 r_y \\
 r_a \\
 r_m
\end{bmatrix} =
\begin{bmatrix}
 1/3 & 2/6 & 3/12 & 5/24 & 0 \\
 1/3 & 1/6 & 2/12 & 3/24 & \ldots & 0 \\
 1/3 & 1/6 & 1/12 & 2/24 & 0
\end{bmatrix}
\]

Here the PageRank score “leaks” out since the matrix is not stochastic.

\[
\begin{array}{ccc}
 y & a & m \\
 \frac{1}{2} & \frac{1}{2} & 0 \\
 \frac{1}{2} & 0 & 0 \\
 0 & \frac{1}{2} & 0
\end{array}
\]

\[
\begin{align*}
 r_y &= r_y/2 + r_a/2 \\
 r_a &= r_y/2 \\
 r_m &= r_a/2
\end{align*}
\]
Teleports: Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly
Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- **Spider-traps** are not a problem, but with traps PageRank scores are **not** what we want
 - **Solution**: Never get stuck in a spider trap by teleporting out of it in a finite number of steps

- **Dead-ends** are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - **Solution**: Make matrix column stochastic by always teleporting when there is nowhere else to go
Google’s solution that does it all:
At each step, random surfer has two options:
- With probability β, follow a link at random
- With probability $1-\beta$, jump to some random page

PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

This formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.
The Google Matrix

- **PageRank equation** [Brin-Page, ‘98]

 \[r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N} \]

- **The Google Matrix A:**

 \[A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N} \]

- **We have a recursive problem:** \(r = A \cdot r \)

 And the Power method still works!

- **What is \(\beta \)?**

 - In practice \(\beta = 0.8, 0.9 \) (make 5 steps on avg., jump)
Random Teleports ($\beta = 0.8$)

\[
\begin{align*}
M &= \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 1 \\
\end{bmatrix} + 0.2 \\
\text{[1/N]}_{N\times N} &= \begin{bmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
y &= \frac{7}{15} 0.33 0.24 0.26 7/33 \\
a &= \frac{7}{15} 0.20 0.20 0.18 \ldots 5/33 \\
m &= \frac{1}{15} 0.46 0.52 0.56 21/33
\end{align*}
\]
How do we actually compute the PageRank?
Key step is matrix-vector multiplication
- \(r^{\text{new}} = A \cdot r^{\text{old}} \)

Easy if we have enough main memory to hold \(A, r^{\text{old}}, r^{\text{new}} \)

Say \(N = 1 \) billion pages
- We need 4 bytes for each entry (say)
- 2 billion entries for vectors, approx 8GB
- Matrix \(A \) has \(N^2 \) entries
 - \(10^{18} \) is a large number!

\[
A = \beta \cdot M + (1-\beta) \left[\frac{1}{N} \right]_{N \times N}
\]

\[
\begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 1 \\
\end{bmatrix}
+ \begin{bmatrix}
\frac{7}{15} & \frac{7}{15} & \frac{1}{15} \\
\frac{7}{15} & \frac{1}{15} & \frac{1}{15} \\
\frac{1}{15} & \frac{7}{15} & \frac{13}{15} \\
\end{bmatrix}
\]

\[
A = 0.8 + 0.2
\]
Rearranging the Equation

- \(\mathbf{r} = A \cdot \mathbf{r} \), where \(A_{ji} = \beta M_{ji} + \frac{1-\beta}{N} \)
- \(r_j = \sum_{i=1}^{N} A_{ji} \cdot r_i \)
- \(r_j = \sum_{i=1}^{N} \left[\beta M_{ji} + \frac{1-\beta}{N} \right] \cdot r_i \)
 \[= \sum_{i=1}^{N} \beta M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^{N} r_i \]
 \[= \sum_{i=1}^{N} \beta M_{ji} \cdot r_i + \frac{1-\beta}{N} \cdot \sum_{i=1}^{N} r_i \]
- So we get: \(\mathbf{r} = \beta \mathbf{M} \cdot \mathbf{r} + \left[\frac{1-\beta}{N} \right] \mathbf{N} \)

Note: Here we assume \(\mathbf{M} \) has no dead-ends

[x]_N ... a vector of length \(N \) with all entries \(x \)
Sparse Matrix Formulation

- We just rearranged the PageRank equation

\[r = \beta M \cdot r + \left[\frac{1 - \beta}{N} \right]_N \]

- where \([(1-\beta)/N]_N\) is a vector with all \(N\) entries \((1-\beta)/N\)

- \(M\) is a sparse matrix! (with no dead-ends)
 - 10 links per node, approx 10\(N\) entries
- So in each iteration, we need to:
 - Compute \(r^{\text{new}} = \beta M \cdot r^{\text{old}}\)
 - Add a constant value \((1-\beta)/N\) to each entry in \(r^{\text{new}}\)
 - Note if \(M\) contains dead-ends then \(\sum_j r_j^{\text{new}} < 1\) and we also have to renormalize \(r^{\text{new}}\) so that it sums to 1
PageRank: The Complete Algorithm

- **Input:** Graph G and parameter β
 - Directed graph G (can have spider traps and dead ends)
 - Parameter β
- **Output:** PageRank vector r^{new}

- **Set:** $r_j^{\text{old}} = \frac{1}{N}$
- **repeat until convergence:** $\sum_j |r_j^{\text{new}} - r_j^{\text{old}}| < \varepsilon$
 - $\forall j$: $r_j^{\text{new}} = \sum_i \beta \frac{r_i^{\text{old}}}{d_i}$
 - $r_j^{\text{new}} = 0$ if in-degree of j is 0
- **Now re-insert the leaked PageRank:**
 - $\forall j$: $r_j^{\text{new}} = r_j^{\text{new}} + \frac{1-S}{N}$ where: $S = \sum_j r_j^{\text{new}}$
- $r^{\text{old}} = r^{\text{new}}$

If the graph has no dead-ends then the amount of leaked PageRank is $1-\beta$. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.
Sparse Matrix Encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - Say 10N, or 4*10*1 billion = 40GB
 - Still won’t fit in memory, but will fit on disk

<table>
<thead>
<tr>
<th>source node</th>
<th>degree</th>
<th>destination nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1, 5, 7</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>17, 64, 113, 117, 245</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>13, 23</td>
</tr>
</tbody>
</table>
Assume enough RAM to fit r^{new} into memory
- Store r^{old} and matrix M on disk

1 step of power-iteration is:

Initialize all entries of $r^{new} = (1-\beta) / N$
For each page i (of out-degree d_i):
 Read into memory: $i, d_i, \text{dest}_1, \ldots, \text{dest}_{d_i}, r^{old}(i)$
 For $j = 1\ldots d_i$
 $r^{new}(\text{dest}_j) += \beta \frac{r^{old}(i)}{d_i}$

Assuming no dead ends
Assume enough RAM to fit r^{new} into memory

- Store r^{old} and matrix M on disk

In each iteration, we have to:

- Read r^{old} and M
- Write r^{new} back to disk

Cost per iteration of Power method:

$$= 2|r| + |M|$$

Question:

- What if we could not even fit r^{new} in memory?
Block-based Update Algorithm

- Break r_{new} into k blocks that fit in memory
- Scan M and r_{old} once for each block
Analysis of Block Update

- Similar to nested-loop join in databases
 - Break r^{new} into k blocks that fit in memory
 - Scan M and r^{old} once for each block
- Total cost:
 - k scans of M and r^{old}
 - Cost per iteration of Power method:
 \[k(|M| + |r|) + |r| = k|M| + (k + 1)|r| \]
- Can we do better?
 - Hint: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration
Break M into stripes! Each stripe contains only destination nodes in the corresponding block of r^{new}.
Block-Stripe Analysis

- Break M into stripes
 - Each stripe contains only destination nodes in the corresponding block of r^{new}
- Some additional overhead per stripe
 - But it is usually worth it
- **Cost per iteration of Power method:**
 $$= |M|(1 + \) + (k + 1)|r|$$
Some Problems with PageRank

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - **Solution:** Topic-Specific PageRank (next)

- Uses a single measure of importance
 - Other models of importance
 - **Solution:** Hubs-and-Authorities

- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - **Solution:** TrustRank