Analysis of Large Graphs: Link Analysis, PageRank

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu
New Topic: Graph Data!

- High dim. data
 - Locality sensitive hashing
 - Clustering
 - Dimensionality reduction

- Graph data
 - PageRank, SimRank
 - Community Detection
 - Spam Detection

- Infinite data
 - Filtering data streams
 - Web advertising
 - Queries on streams

- Machine learning
 - SVM
 - Decision Trees
 - Perceptron, kNN

- Apps
 - Recommender systems
 - Association Rules
 - Duplicate document detection

2/5/19

Jure Leskovec, Stanford C246: Mining Massive Datasets
Facebook social graph
4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]
Graph Data: Media Networks

Connections between political blogs
Polarization of the network [Adamic-Glance, 2005]
Graph Data: Information Nets

Citation networks and Maps of science
[Börner et al., 2012]
Graph Data: Communication Networks

Internet
Seven Bridges of Königsberg

Euler, 1735

Return to the starting point by traveling each link of the graph once and only once.
Web as a directed graph:

- **Nodes:** Webpages
- **Edges:** Hyperlinks

I teach a class on Networks.

CS224W: Classes are in the Gates building.

Computer Science Department at Stanford.

Stanford University.

Stanford University
Web as a directed graph:

- **Nodes**: Webpages
- **Edges**: Hyperlinks

I teach a class on Networks.

CS224W: Classes are in the Gates building.

Computer Science Department at Stanford.

Stanford University.
Web as a Directed Graph

- I'm a student at Univ. of X
- My song lyrics
- Classes
- Networks
- Networks class blog
- Blog post about Company Z
- Blog post about college rankings
- I teach at Univ. of X
- Univ. of X
- I'm applying to college
- USNews College Rankings
- USNews Featured Colleges
How to organize the Web?

First try: Human curated Web directories
- Yahoo, DMOZ, LookSmart

Second try: Web Search
- Information Retrieval investigates:
 Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.

But: Web is huge, full of untrusted documents, random things, web spam, etc.
2 challenges of web search:

1. Web contains many sources of information
 - Who to “trust”?
 - **Trick:** Trustworthy pages may point to each other!

2. What is the “best” answer to query “newspaper”?
 - No single right answer
 - **Trick:** Pages that actually know about newspapers might all be pointing to many newspapers
- All web pages are not equally “important”
 www.joe-schmoe.com vs. www.stanford.edu

- There is a large diversity in the web-graph node connectivity.
 Let’s rank the pages by the link structure!
We will cover the following Link Analysis approaches for computing importances of nodes in a graph:

- Page Rank
- Topic-Specific (Personalized) Page Rank
- Web Spam Detection Algorithms
PageRank: The “Flow” Formulation
Links as Votes

- **Idea: Links as votes**
 - Page is more important if it has more links
 - In-coming links? Out-going links?

- **Think of in-links as votes:**
 - www.stanford.edu has 23,400 in-links
 - www.joe-schmoe.com has 1 in-link

- **Are all in-links equal?**
 - Links from important pages count more
 - Recursive question!
Intuition – (1)

- Web pages are important if people visit them a lot.
- But we can’t watch everybody using the Web.
- A good surrogate for visiting pages is to assume people follow links randomly.
- Leads to random surfer model:
 - Start at a random page and follow random out-links repeatedly, from whatever page you are at.
 - PageRank = limiting probability of being at a page.
Solve the recursive equation: “importance of a page = its share of the importance of each of its predecessor pages”
- Equivalent to the random-surfer definition of PageRank

Technically, importance = the principal eigenvector of the transition matrix of the Web
- A few fix-ups needed
Example: PageRank Scores

A 3.3
B 38.4
C 34.3
D 3.9
E 8.1
F 3.9

1.6 1.6 1.6 1.6 1.6 1.6
Simple Recursive Formulation

- Each link’s vote is proportional to the importance of its source page.

- If page j with importance r_j has n out-links, each link gets r_j/n votes.

- Page j’s own importance is the sum of the votes on its in-links.

$$ r_j = r_i/3 + r_k/4 $$

Jure Leskovec, Stanford C246: Mining Massive Datasets
PageRank: The “Flow” Model

- A “vote” from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a “rank” r_j for page j

$$r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$$

d_i ... out-degree of node i

The web in 1839

“Flow” equations:
- $r_y = r_y/2 + r_a/2$
- $r_a = r_y/2 + r_m$
- $r_m = r_a/2$
Solving the Flow Equations

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo the scale factor
- Additional constraint forces uniqueness:
 - \(r_y + r_a + r_m = 1 \)
 - Solution: \(r_y = \frac{2}{5}, \ r_a = \frac{2}{5}, \ r_m = \frac{1}{5} \)
- Gaussian elimination method works for small examples, but we need a better method for large web-size graphs
- We need a new formulation!

Flow equations:

\[
\begin{align*}
 r_y &= r_y/2 + r_a/2 \\
 r_a &= r_y/2 + r_m \\
 r_m &= r_a/2 \\
\end{align*}
\]
PageRank: Matrix Formulation

- **Stochastic adjacency matrix** M
 - Let page i has d_i out-links
 - If $i \rightarrow j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$
 - M is a **column stochastic matrix**
 - Columns sum to 1
- **Rank vector** r: vector with an entry per page
 - r_i is the importance score of page i
 - $\sum_i r_i = 1$
- The flow equations can be written
 $$ r \ = \ M \cdot r $$
Example

- Remember the flow equation: $r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
- Flow equation in the matrix form $M \cdot r = r$
- Suppose page i links to 3 pages, including j
Example: Flow Equations & M

\[r = M \cdot r \]

\[
\begin{align*}
 r_y &= \frac{r_y}{2} + \frac{r_a}{2} \\
 r_a &= \frac{r_y}{2} + \frac{r_m}{2} \\
 r_m &= \frac{r_a}{2}
\end{align*}
\]

\[
\begin{pmatrix}
 r_y \\
 r_a \\
 r_m
\end{pmatrix}
= \begin{pmatrix}
 \frac{1}{2} & \frac{1}{2} & 0 \\
 \frac{1}{2} & 0 & 1 \\
 0 & \frac{1}{2} & 0
\end{pmatrix}
\begin{pmatrix}
 r_y \\
 r_a \\
 r_m
\end{pmatrix}
\]
The flow equations can be written
\[r = M \cdot r \]
So the rank vector \(r \) is an eigenvector of the stochastic web matrix \(M \)
- Starting from any vector \(u \), the limit \(M(M(...M(M u))) \) is the long-term distribution of the surfers.
 - The math: limiting distribution = principal eigenvector of \(M = \text{PageRank} \).
 - Note: If \(r \) is the limit of \(MM ... M u \), then \(r \) satisfies the equation \(r = M r \), so \(r \) is an eigenvector of \(M \) with eigenvalue 1

We can now efficiently solve for \(r \)!
The method is called Power iteration

NOTE: \(x \) is an eigenvector with the corresponding eigenvalue \(\lambda \) if:
\[Ax = \lambda x \]
Power Iteration Method

- Given a web graph with \(n \) nodes, where the nodes are pages and edges are hyperlinks
- **Power iteration**: a simple iterative scheme
 - Suppose there are \(N \) web pages
 - Initialize: \(\mathbf{r}(0) = [1/N, \ldots, 1/N]^T \)
 - Iterate: \(\mathbf{r}^{(t+1)} = \mathbf{M} \cdot \mathbf{r}^{(t)} \)
 - Stop when \(|\mathbf{r}^{(t+1)} - \mathbf{r}^{(t)}|_1 < \varepsilon \)

 \[
 |\mathbf{x}|_1 = \sum_{1 \leq i \leq N} |\mathbf{x}_i| \text{ is the } L_1 \text{ norm}
 \]
 Can use any other vector norm, e.g., Euclidean

About 50 iterations is sufficient to estimate the limiting solution.
Power Iteration:

- Set $r_j = 1/N$
- 1: $r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
- 2: $r = r'$
- Goto 1

Example:

\[
\begin{pmatrix}
 r_y \\
r_a \\
r_m
\end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix}
\]

Iteration 0, 1, 2, …

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>½</td>
<td>½</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>½</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>½</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
r_y &= r_y/2 + r_a/2 \\
r_a &= r_y/2 + r_m \\
r_m &= r_a/2
\end{align*}
\]
Power Iteration:
- Set $r_j = 1/N$
- $1: r'_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
- $2: r = r'$
- Goto 1

Example:

\[
\begin{pmatrix} r_y \\ r_a \\ r_m \end{pmatrix} = \begin{pmatrix} 1/3 & 1/3 & 5/12 & 9/24 & 6/15 \\ 1/3 & 3/6 & 1/3 & 11/24 & \ldots & 6/15 \\ 1/3 & 1/6 & 3/12 & 1/6 & 3/15 \end{pmatrix}
\]

Iteration 0, 1, 2, …
Imagine a random web surfer:
- At any time t, surfer is on some page i
- At time $t + 1$, the surfer follows an out-link from i uniformly at random
- Ends up on some page j linked from i
- Process repeats indefinitely

Let:
- $p(t)$... vector whose i^{th} coordinate is the prob. that the surfer is at page i at time t
- So, $p(t)$ is a probability distribution over pages

\[r_j = \sum_{i \rightarrow j} \frac{r_i}{d_{out}(i)} \]
Where is the surfer at time $t+1$?
- Follows a link uniformly at random
 $$p(t + 1) = M \cdot p(t)$$
- Suppose the random walk reaches a state
 $$p(t + 1) = M \cdot p(t) = p(t)$$
 then $p(t)$ is stationary distribution of a random walk

Our original rank vector r satisfies $r = M \cdot r$
- So, r is a stationary distribution for the random walk
A central result from the theory of random walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, the stationary distribution is unique and eventually will be reached no matter what is the initial probability distribution at time $t = 0$.

Existence and Uniqueness
PageRank: The Google Formulation
PageRank: Three Questions

\[r_j^{(t+1)} = \sum_{i \rightarrow j} \frac{r_i^{(t)}}{d_i} \]

or equivalently

\[r = Mr \]

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?
Does this converge?

Example:

\[r_a = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \]

\[r_b = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix} \]

\[r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i} \]
Does it converge to what we want?

- Example:

\[
\begin{align*}
 r_a &= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix} \\
 r_b &= \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}
\end{align*}
\]

Iteration 0, 1, 2, …
PageRank: Problems

2 problems:
- (1) **Dead ends**: Some pages have no out-links
 - Random walk has “nowhere” to go to
 - Such pages cause importance to “leak out”
- (2) **Spider traps**: (all out-links are within the group)
 - Random walk gets “stuck” in a trap
 - And eventually spider traps absorb all importance
Problem: Spider Traps

- **Power Iteration:**
 - Set $r_j = 1$
 - $r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i}$
 - And iterate

- **Example:**

\[
\begin{pmatrix}
 r_y \\
 r_a \\
 r_m
\end{pmatrix} =
\begin{pmatrix}
 1/3 & 2/6 & 3/12 & 5/24 & 0 \\
 1/3 & 1/6 & 2/12 & 3/24 & \ldots & 0 \\
 1/3 & 3/6 & 7/12 & 16/24 & 1
\end{pmatrix}
\]

Iteration 0, 1, 2, …

All the PageRank score gets “trapped” in node m.

\[
\begin{array}{c|c|c|c}
 y & a & m \\
 \hline
 \frac{1}{2} & \frac{1}{2} & 0 \\
 \frac{1}{2} & 0 & 0 \\
 0 & \frac{1}{2} & 1 \\
\end{array}
\]

\[
\begin{align*}
r_y &= \frac{r_y}{2} + \frac{r_a}{2} \\
r_a &= \frac{r_y}{2} \\
r_m &= \frac{r_a}{2} + r_m
\end{align*}
\]
Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - With prob. β, follow a link at random
 - With prob. $1-\beta$, jump to some random page
 - β is typically in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps
Problem: Dead Ends

- **Power Iteration:**
 - Set \(r_j = 1 \)
 - \(r_j = \sum_{i \rightarrow j} \frac{r_i}{d_i} \)
 - And iterate

- **Example:**

\[
\begin{pmatrix}
 r_y \\
r_a \\
r_m
\end{pmatrix} = \begin{pmatrix}
 1/3 & 2/6 & 3/12 & 5/24 & 0 \\
 1/3 & 1/6 & 2/12 & 3/24 & \ldots & 0 \\
 1/3 & 1/6 & 1/12 & 2/24 & 0
\end{pmatrix}
\]

Iteration 0, 1, 2, …

Here the PageRank score “leaks” out since the matrix is not stochastic.
Solution: Always Teleport!

- **Teleports**: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

\[
\begin{array}{ccc}
\text{y} & \text{a} & \text{m} \\
\text{y} & \frac{1}{2} & \frac{1}{2} & 0 \\
\text{a} & \frac{1}{2} & 0 & 0 \\
\text{m} & 0 & \frac{1}{2} & 0 \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{y} & \text{a} & \text{m} \\
\text{y} & \frac{1}{2} & \frac{1}{2} & \frac{1}{3} \\
\text{a} & \frac{1}{2} & 0 & \frac{1}{3} \\
\text{m} & 0 & \frac{1}{2} & \frac{1}{3} \\
\end{array}
\]
Why Teleports Solve the Problem?

Why are dead-ends and spider traps a problem and why do teleports solve the problem?

- **Spider-traps** are not a problem, but with traps PageRank scores are **not** what we want
 - **Solution**: Never get stuck in a spider trap by teleporting out of it in a finite number of steps

- **Dead-ends** are a problem
 - The matrix is not column stochastic so our initial assumptions are not met
 - **Solution**: Make matrix column stochastic by always teleporting when there is nowhere else to go
Google’s solution that does it all:
At each step, random surfer has two options:
- With probability β, follow a link at random
- With probability $1-\beta$, jump to some random page

PageRank equation [Brin-Page, 98]

$$r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

This formulation assumes that M has no dead ends. We can either preprocess matrix M to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.
The Google Matrix

- **PageRank equation** [Brin-Page, ‘98]
 \[r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N} \]

- **The Google Matrix** \(A \):
 \[A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N} \]

- **We have a recursive problem**: \(r = A \cdot r \)
 And the Power method still works!

- **What is \(\beta \)?**
 - In practice \(\beta = 0.8, 0.9 \) (make 5 steps on avg., jump)
Random Teleports (β = 0.8)

\[
M = \begin{bmatrix}
1/2 & 1/2 & 0 \\
1/2 & 0 & 0 \\
0 & 1/2 & 1 \\
\end{bmatrix}
\]

\[
[1/N]_{NxN} = \begin{bmatrix}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
\end{bmatrix}
\]

\[
A = \begin{bmatrix}
y & 7/15 & 7/15 & 1/15 \\
a & 7/15 & 1/15 & 1/15 \\
m & 1/15 & 7/15 & 13/15 \\
\end{bmatrix}
\]

\[
y = \begin{bmatrix}
1/3 \\
a = 1/3 \\
m = 1/3 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.33 \\
0.20 \\
0.46 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.24 \\
0.20 \\
0.52 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.26 \\
0.18 \\
0.56 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
7/33 \\
5/33 \\
21/33 \\
\end{bmatrix}
\]

Jure Leskovec, Stanford C246: Mining Massive Datasets
How do we actually compute the PageRank?
Computing PageRank

- **Key step is matrix-vector multiplication**
 - \(r^{\text{new}} = A \cdot r^{\text{old}} \)
- Easy if we have enough main memory to hold \(A, r^{\text{old}}, r^{\text{new}} \)
- Say \(N = 1 \) billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix \(A \) has \(N^2 \) entries
 - \(10^{18} \) is a large number!

\[
A = \beta \cdot M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}
\]

\[
A = \begin{pmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 1
\end{pmatrix}
+ 0.2
\begin{pmatrix}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3
\end{pmatrix}
\]

\[
= \begin{pmatrix}
7/15 & 7/15 & 1/15 \\
7/15 & 1/15 & 1/15 \\
1/15 & 7/15 & 13/15
\end{pmatrix}
\]
Rearranging the Equation

- \(\mathbf{r} = A \cdot \mathbf{r}, \) where \(A_{ji} = \beta M_{ji} + \frac{1-\beta}{N} \)

- \(r_j = \sum_{i=1}^{N} A_{ji} \cdot r_i \)

- \(r_j = \sum_{i=1}^{N} \left[\beta M_{ji} + \frac{1-\beta}{N} \right] \cdot r_i \)

- \(= \sum_{i=1}^{N} \beta M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^{N} r_i \)

- \(= \sum_{i=1}^{N} \beta M_{ji} \cdot r_i + \frac{1-\beta}{N} \sum_{i=1}^{N} r_i \) \hspace{1cm} \text{since} \ \sum r_i = 1

- So we get: \(\mathbf{r} = \beta \mathbf{M} \cdot \mathbf{r} + \left[\frac{1-\beta}{N} \right] \mathbf{r} \)

Note: Here we assume \(\mathbf{M} \) has no dead-ends

\([x]_N \ldots \) a vector of length \(N \) with all entries \(x \)
We just rearranged the PageRank equation
\[r = \beta M \cdot r + \left[\frac{1 - \beta}{N} \right]_N \]
- where \([(1-\beta)/N]_N\) is a vector with all \(N\) entries \((1-\beta)/N\)

- \(M\) is a sparse matrix! (with no dead-ends)
 - 10 links per node, approx \(10N\) entries
- So in each iteration, we need to:
 - Compute \(r^{\text{new}} = \beta M \cdot r^{\text{old}}\)
 - Add a constant value \((1-\beta)/N\) to each entry in \(r^{\text{new}}\)
 - Note if \(M\) contains dead-ends then \(\sum_j r_j^{\text{new}} < 1\) and we also have to renormalize \(r^{\text{new}}\) so that it sums to 1
PageRank: The Complete Algorithm

- **Input:** Graph G and parameter β
 - Directed graph G (can have spider traps and dead ends)
 - Parameter β
- **Output:** PageRank vector r^{new}

 - **Set:** $r_j^{old} = \frac{1}{N}$
 - **repeat until convergence:** $\sum_j |r_j^{new} - r_j^{old}| < \varepsilon$
 - $\forall j$: $r_j^{new} = \sum_{i \to j} \beta \frac{r_i^{old}}{d_i}$
 - $r_j^{new} = 0$ if in-degree of j is 0
 - **Now re-insert the leaked PageRank:**
 - $\forall j$: $r_j^{new} = r_j^{new} + \frac{1-S}{N}$ where: $S = \sum_j r_j^{new}$
 - $r^{old} = r^{new}$

If the graph has no dead-ends then the amount of leaked PageRank is $1-\beta$. But since we have dead-ends the amount of leaked PageRank may be larger. We have to explicitly account for it by computing S.

2/5/19
Jure Leskovec, Stanford C246: Mining Massive Datasets
Sparse Matrix Encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - Say 10N, or 4*10*1 billion = 40GB
 - Still won’t fit in memory, but will fit on disk

<table>
<thead>
<tr>
<th>source node</th>
<th>degree</th>
<th>destination nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1, 5, 7</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>17, 64, 113, 117, 245</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>13, 23</td>
</tr>
</tbody>
</table>
Basic Algorithm: Update Step

- **Assume enough RAM to fit** r^{new} **into memory**
 - Store r^{old} and matrix M on disk
- **1 step of power-iteration is:**
 - **Initialize** all entries of $r^{new} = (1-\beta) / N$
 - For each page i (of out-degree d_i):
 - Read into memory: i, d_i, $dest_1$, ..., $dest_{d_i}$, $r^{old}(i)$
 - For $j = 1 \ldots d_i$
 - $r^{new}(dest_j) += \beta r^{old}(i) / d_i$

Table:

<table>
<thead>
<tr>
<th>source</th>
<th>degree</th>
<th>destination</th>
<th>r^{old}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1, 5, 6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>17, 64, 113, 117</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>13, 23</td>
<td></td>
</tr>
</tbody>
</table>

Assuming no dead ends.
Assume enough RAM to fit r^{new} into memory

- Store r^{old} and matrix M on disk

In each iteration, we have to:

- Read r^{old} and M
- Write r^{new} back to disk

Cost per iteration of Power method:

\[= 2|r| + |M| \]

Question:

- What if we could not even fit r^{new} in memory?
Block-based Update Algorithm

- Break r^{new} into k blocks that fit in memory
- Scan M and r^{old} once for each block

<table>
<thead>
<tr>
<th>src</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0, 1, 3, 5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0, 5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3, 4</td>
</tr>
</tbody>
</table>

M
Analysis of Block Update

- Similar to nested-loop join in databases
 - Break r^{new} into k blocks that fit in memory
 - Scan M and r^{old} once for each block
- Total cost:
 - k scans of M and r^{old}
 - Cost per iteration of Power method:
 $$k(|M| + |r|) + |r| = k|M| + (k + 1)|r|$$
- Can we do better?
 - **Hint**: M is much bigger than r (approx 10-20x), so we must avoid reading it k times per iteration
Block-Stripe Update Algorithm

Break M into stripes! Each stripe contains only destination nodes in the corresponding block of r^{new}

Table

<table>
<thead>
<tr>
<th>src</th>
<th>degree</th>
<th>destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0, 1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Diagram

- **r^{new}**
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5

- **r^{old}**
 - 0
 - 1
 - 2
 - 3
 - 4
 - 5
Block-Stripe Analysis

- Break M into stripes
 - Each stripe contains only destination nodes in the corresponding block of r^{new}
- Some additional overhead per stripe
 - But it is usually worth it
- **Cost per iteration of Power method:**
 $$= |M| (1 +) + (k + 1) |r|$$
Some Problems with PageRank

- Measures generic popularity of a page
 - Biased against topic-specific authorities
 - **Solution:** Topic-Specific PageRank (next)
- Uses a single measure of importance
 - Other models of importance
 - **Solution:** Hubs-and-Authorities
- Susceptible to Link spam
 - Artificial link topographies created in order to boost page rank
 - **Solution:** TrustRank