Graph Representation Learning

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu
Example: Link Prediction
Machine Learning in Networks

Node classification

Machine Learning
Example: Node Classification

Classifying the function of proteins in the interactome

(Supervised) Machine Learning Lifecycle requires feature engineering every single time!

- Raw Data
- Structured Data
- Learning Algorithm
- Model

Feature Engineering

Automatically learn the features

Downstream task
Goal: Efficient task-independent feature learning for machine learning in networks!

\[f: u \rightarrow \mathbb{R}^d \]

Feature representation, embedding
What is network embedding?

Task: We map each node in a network to a point in a low-dimensional space

- Distributed representation for nodes
- Similarity of embedding between nodes indicates their network similarity
- Encode network information and generate node representation
Example Node Embedding

2D embedding of nodes of the Zachary’s Karate Club network:

Modern deep learning toolbox is designed for simple sequences or grids

- CNNs for fixed-size images/grids...

- RNNs or word2vec for text/sequences...
But networks are far more complex!

- Complex topographical structure (no spatial locality like grids)
- No fixed node ordering or reference point
- Often dynamic and have multimodal features.
Assume we have a graph G:

- V is the vertex set
- A is the adjacency matrix (assume binary)
- No node features or extra information is used!
Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the original network.
Embedding Nodes

Goal: \(\text{similarity}(u, v) \approx z_v^\top z_u \)

Similarity of the embedding

Need to define!
1. Define an encoder (i.e., a mapping from nodes to embeddings)
2. Define a node similarity function (i.e., a measure of similarity in the original network)
3. Optimize the parameters of the encoder so that:

\[
\text{similarity}(u, v) \approx Z_u^\top Z_u
\]

in the original network

Similarity of the embedding
Two Key Components

- **Encoder** maps each node to a low-dimensional vector

 \[\text{ENC}(v) = z_v \]

 node in the input graph

- **Similarity function** specifies how relationships in vector space map to relationships in the original network

 \[\text{similarity}(u, v) \approx z_v^\top z_u \]

 Similarity of \(u \) and \(v \) in the original network
 dot product between node embeddings
“Shallow” Encoding

- Simplest encoding approach: encoder is just an embedding-lookup

\[
ENC(\nu) = Z\nu
\]

\[Z \in \mathbb{R}^{d \times |\mathcal{V}|}\]

- Matrix, each column is \(d\)-dim node embedding [what we learn!]

\[\nu \in \mathbb{I}^{||\mathcal{V}||}\]

- Indicator vector, all zeroes except a one in column indicating node \(\nu\)
Simplest encoding approach: **encoder is just an embedding-lookup**

- $Z = \text{embedding matrix}$
- $\text{embedding vector for a specific node}$
- Dimension/size of embeddings
- one column per node
“Shallow” Encoding

Simplest encoding approach: encoder is just an embedding-lookup

Each node is assigned a unique embedding vector

Many methods: node2vec, DeepWalk, LINE
Key choice of methods is how they define node similarity.

E.g., should two nodes have similar embeddings if they....

- are connected?
- share neighbors?
- have similar “structural roles”?
- ...?
Random Walk Approaches to Node Embeddings

Material based on:
• Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.
• Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.
Random-walk Embeddings

\[Z_u^\top Z_v \approx \]

Probability that \(u \) and \(v \) co-occur on a random walk over the network

\(z_u \) ... embedding of node \(u \)
1. Estimate probability of visiting node v on a random walk starting from node u using some random walk strategy R

2. Optimize embeddings to encode these random walk statistics:

 Similarity (here: dot product=$\cos(\theta)$) encodes random walk “similarity”
Why Random Walks?

1. **Expressivity:** Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information

2. **Efficiency:** Do not need to consider all node pairs when training; **only need to consider pairs that co-occur on random walks**
Intuition: Find embedding of nodes to d-dimensional space so that node similarity is preserved

Idea: Learn node embedding such that nearby nodes are close together in the network

Given a node u, how do we define nearby nodes?
- $N_R(u)$... neighbourhood of u obtained by some strategy R
Given $G = (V, E)$

Our goal is to learn a mapping $z: u \rightarrow \mathbb{R}^d$

Log-likelihood objective:

$$\max_z \sum_{u \in V} \log P(N_R(u) | z_u)$$

where $N_R(u)$ is neighborhood of node u

Given node u, we want to learn feature representations predictive of nodes in its neighborhood $N_R(u)$
Random Walk Optimization

1. Run short fixed-length random walks starting from each node on the graph using some strategy R

2. For each node u collect $N_R(u)$, the multiset* of nodes visited on random walks starting from u

3. Optimize embeddings according to: Given node u, predict its neighbors $N_R(u)$

$$\max_z \sum_{u \in V} \log P(N_R(u) | z_u)$$

*N$_R$(u) can have repeat elements since nodes can be visited multiple times on random walks
Random Walk Optimization

\[
\max_z \sum_{u \in V} \log P(N_R(u) | z_u)
\]

- **Assumption:** Conditional likelihood factorizes over the set of neighbors:

\[
\log P(N_R(u) | z_u) = \sum_{v \in N_S(u)} \log P(z_v | z_u)
\]

- **Softmax parametrization:**

\[
Pr(z_v | z_u) = \frac{\exp(z_v \cdot z_u)}{\sum_{n \in V} \exp(z_n \cdot z_u)}
\]

Why softmax?
We want node \(v\) to be most similar to node \(u\) (out of all nodes \(n\)).

Intuition: \(\sum_i \exp(x_i) \approx \max_i \exp(x_i)\)
Putting it all together:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} - \log \left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)} \right)$$

- Sum over all nodes u
- Sum over nodes v seen on random walks starting from u
- Predicted probability of u and v co-occurring on random walk

Optimizing random walk embeddings =

Finding node embeddings z that minimize \mathcal{L}
Random Walk Optimization

But doing this naively is too expensive!!

\[
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} - \log \left(\frac{\exp(\mathbf{z}_u^\top \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^\top \mathbf{z}_n)} \right)
\]

Nested sum over nodes gives \(O(|V|^2)\) complexity!
Random Walk Optimization

But doing this naively is too expensive!!

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} - \log \left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)} \right)$$

The normalization term from the softmax is the culprit... can we approximate it?
Solution: Negative sampling

\[
\log \left(\frac{\exp(\mathbf{z}_u^\top \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^\top \mathbf{z}_n)} \right)
\]

\[
\approx \log(\sigma(\mathbf{z}_u^\top \mathbf{z}_v)) - \sum_{i=1}^{k} \log(\sigma(\mathbf{z}_u^\top \mathbf{z}_{n_i})), \ n_i \sim P_V
\]

Why is the approximation valid?
Technically, this is a different objective. But Negative Sampling is a form of Noise Contrastive Estimation (NCE) which approx. maximizes the log probability of softmax.

New formulation corresponds to using a logistic regression (sigmoid func.) to distinguish the target node \(v \) from nodes \(n_i \) sampled from background distribution \(P_V \).

- **Solution:** Negative sampling
- Sigmoid function
 (makes each term a "probability" between 0 and 1)
- Random distribution over all nodes
- Instead of normalizing w.r.t. all nodes, just normalize against \(k \) random "negative samples" \(n_i \)
Negative Sampling

\[
\log \left(\frac{\exp(z^\top_u z_v)}{\sum_{n \in V} \exp(z^\top_u z_n)} \right)
\]

\[
\approx \log(\sigma(z^\top_u z_v)) - \sum_{i=1}^{k} \log(\sigma(z^\top_u z_{n_i})), n_i \sim P_V
\]

- Sample \(k\) negative nodes proportional to degree
- Two considerations for \(k\) (# negative samples):
 1. Higher \(k\) gives more robust estimates
 2. Higher \(k\) corresponds to higher prior on negative events

In practice \(k = 5-20\)
1. Run **short fixed-length** random walks starting from each node on the graph using some strategy R.

2. For each node u collect $N_R(u)$, the multiset of nodes visited on random walks starting from u.

3. Optimize embeddings using Stochastic Gradient Descent:

$$
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} - \log(P(v|z_u))
$$

We can efficiently approximate this using negative sampling!
How should we randomly walk?

- So far we have described how to optimize embeddings given random walk statistics.

- **What strategies should we use to run these random walks?**
 - Simplest idea: *Just run fixed-length, unbiased random walks starting from each node* (i.e., [DeepWalk from Perozzi et al., 2013](https://arxiv.org/abs/1403.6655)).
 - The issue is that such notion of similarity is too constrained.
 - How can we generalize this?
Overview of node2vec

- **Goal**: Embed nodes with similar network neighborhoods close in the feature space

- We frame this goal as prediction-task independent maximum likelihood optimization problem

- **Key observation**: Flexible notion of network neighborhood $N_R(u)$ of node u leads to rich node embeddings

- Develop biased 2nd order random walk R to generate network neighborhood $N_R(u)$ of node u
node2vec: Biased Walks

Idea: use flexible, biased random walks that can trade off between local and global views of the network (Grover and Leskovec, 2016).
Two classic strategies to define a neighborhood $N_R(u)$ of a given node u:

Walk of length 3 ($N_R(u)$ of size 3):

$N_{BFS}(u) = \{ s_1, s_2, s_3 \}$ Local microscopic view

$N_{DFS}(u) = \{ s_4, s_5, s_6 \}$ Global macroscopic view
Biased fixed-length random walk R that given a node u generates neighborhood $N_R(u)$

- Two parameters:
 - **Return parameter p:**
 - Return back to the previous node
 - **In-out parameter q:**
 - Moving outwards (DFS) vs. inwards (BFS)
 - Intuitively, q is the “ratio” of BFS vs. DFS
Biased Random Walks

Biased 2nd-order random walks explore network neighborhoods:

- Rnd. walk just traversed edge \((s_1, w)\) and is now at \(w\)
- **Insight:** Neighbors of \(w\) can only be:

\[
\begin{align*}
\text{Same distance to } s_1 \\
\text{Farther from } s_1 \\
\text{Back to } s_1
\end{align*}
\]

Idea: Remember where that walk came from
Walker came over edge \((s_1, w)\) and is at \(w\). Where to go next?

- \(p, q\) model transition probabilities
 - \(p\) ... return parameter
 - \(q\) ... “walk away” parameter

\(1/p, 1/q, 1\) are unnormalized probabilities
Walker came over edge \((s_1, w)\) and is at \(w\). Where to go next?

- **BFS-like** walk: Low value of \(p\)
- **DFS-like** walk: Low value of \(q\)

\(N_R(u)\) are the nodes visited by the biased walk.
node2vec algorithm

1) Compute random walk probabilities
2) Simulate r random walks of length l starting from each node u
3) Optimize the node2vec objective using Stochastic Gradient Descent

Linear-time complexity.
All 3 steps are individually parallelizable
BFS vs. DFS

BFS:
Micro-view of neighbourhood

DFS:
Macro-view of neighbourhood
Experiments: Micro vs. Macro

Small network of interactions of characters in a novel:

p=1, q=2
Microscopic view of the network neighbourhood

p=1, q=0.5
Macroscopic view of the network neighbourhood
How does predictive performance change as we
- randomly remove a fraction of edges (left)
- randomly add a fraction of edges (right)
Other random walk ideas

(not covered in detailed here but for your reference)

- **Different kinds of biased random walks:**
 - Based on node attributes ([Dong et al., 2017](#)).
 - Based on a learned weights ([Abu-El-Haija et al., 2017](#)).

- **Alternative optimization schemes:**
 - Directly optimize based on 1-hop and 2-hop random walk probabilities (as in [LINE from Tang et al. 2015](#)).

- **Network preprocessing techniques:**
 - Run random walks on modified versions of the original network (e.g., [Ribeiro et al. 2017’s struct2vec](#), [Chen et al. 2016’s HARP](#)).
How to Use Embeddings

- How to use embeddings z_i of nodes:
 - Clustering/community detection: Cluster nodes/points based on z_i
 - Node classification: Predict label $f(z_i)$ of node i based on z_i
 - Link prediction: Predict edge (i, j) based on $f(z_i, z_j)$

 Where we can: concatenate, avg, product, or take a difference between the embeddings:
 - Concatenate: $f(z_i, z_j) = g([z_i, z_j])$
 - Hadamard: $f(z_i, z_j) = g(z_i \ast z_j)$ (per coordinate product)
 - Sum/Avg: $f(z_i, z_j) = g(z_i + z_j)$
 - Distance: $f(z_i, z_j) = g(||z_i - z_j||_2)$
Basic idea: Embed nodes so that distances in embedding space reflect node similarities in the original network.

Different notions of node similarity:
- Adjacency-based (i.e., similar if connected)
- Multi-hop similarity definitions.
- Random walk approaches (covered today)
So what method should I use..?
No one method wins in all cases....
- E.g., node2vec performs better on node classification while multi-hop methods performs better on link prediction (Goyal and Ferrara, 2017 survey)
- Random walk approaches are generally more efficient
In general: Must choose def’n of node similarity that matches your application!
Embedding Entire Graphs
Graph Classification

- **Tasks:**
 - Classifying toxic vs. non-toxic molecules
 - Identifying cancerogenic molecules
 - Graph anomaly detection
 - Classifying social networks
Embedding Entire Graphs

- **Goal:** Want to embed an entire graph G
Simple idea:

- Run a standard graph embedding technique on the (sub)graph G
- Then just sum (or average) the node embeddings in the (sub)graph G

$$Z_G = \sum_{\nu \in G} Z_{\nu}$$

- Used by Duvenaud et al., 2016 to classify molecules based on their graph structure
Idea: Introduce a "virtual node" to represent the (sub)graph and run a standard graph embedding technique

Proposed by Li et al., 2016 as a general technique for subgraph embedding