Graph Representation Learning
Example: Link Prediction

Machine Learning
Machine Learning in Networks

Node classification

Jure Leskovec, Stanford C246: Mining Massive Datasets
Classifying the function of proteins in the interactome

(Supervised) Machine Learning Lifecycle requires feature engineering every single time!
Goal: Efficient task-independent feature learning for machine learning in networks!

Feature representation, embedding

$f: u \rightarrow \mathbb{R}^d$
Why network embedding?

Task: We map each node in a network to a point in a low-dimensional space

- Distributed representation for nodes
- Similarity of embedding between nodes indicates their network similarity
- Encode network information and generate node representation

Jure Leskovec, Stanford C246: Mining Massive Datasets
2D embedding of nodes of the Zachary’s Karate Club network:

Embedding Nodes
Assume we have a graph G:

- V is the vertex set
- A is the adjacency matrix (assume binary)
- **No node features or extra information is used!**
Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the original network.
Embedding Nodes

Goal: \(\text{similarity}(u, v) \approx z_v^T z_u \)

in the original network

-encoded nodes

original network

embedding space

Need to define!
1. Define an encoder (i.e., a mapping from nodes to embeddings)

2. Define a node similarity function (i.e., a measure of similarity in the original network)

3. Optimize the parameters of the encoder so that:

 \[
 \text{similarity}(u, v) \approx z_u^T z_v
 \]

 Similarity of the embedding in the original network
Two Key Components

- **Encoder** maps each node to a low-dimensional vector:
 \[\text{ENC}(v) = z_v \]
 d-dimensional embedding
 node in the input graph

- **Similarity function** specifies how relationships in vector space map to relationships in the original network:
 \[\text{similarity}(u, v) \approx z_v^\top z_u \]
 Similarity of \(u \) and \(v \) in the original network
 dot product between node embeddings
Simplest encoding approach: encoder is just an embedding-lookup

\[\text{ENC}(\nu) = Z\nu \]

\[Z \in \mathbb{R}^{d \times |\mathcal{V}|} \quad \text{Matrix, each column is } d\text{-dim node embedding [what we learn!]} \]

\[\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|} \quad \text{Indicator vector, all zeroes except for a “1” at the position that corresponds to node } \nu \]
Simplest encoding approach: encoder is just an embedding-lookup

\[\mathbf{Z} = \begin{bmatrix} \end{bmatrix} \]

embedding matrix

embedding vector for a specific node

Dimension/size of embeddings

one column per node
Simplest encoding approach: **encoder is just an embedding-lookup**

Each node is assigned a unique embedding vector

Many methods: node2vec, DeepWalk, LINE
Key choice of methods is **how they define node similarity**.

E.g., should two nodes have similar embeddings if they...

- are connected?
- share neighbors?
- have similar “structural roles”?
- ...?
Random Walk Approaches to Node Embeddings

Material based on:
- Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. *KDD.*
- Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. *KDD.*
Random-walk Embeddings

\[Z_u^T Z_v \approx \]

Probability that \(u \) and \(v \) co-occur on a random walk over the network

\(Z_u \) … embedding of node \(u \)
1. Estimate probability of visiting node v on a random walk starting from node u using some random walk strategy R

2. Optimize embeddings to encode these random walk statistics:
 Similarity (here: dot product=$\cos(\theta)$) encodes random walk “similarity”
1. **Expressivity**: Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information

2. **Efficiency**: Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks
Intuition: Find embedding of nodes in d-dimensional space so that node similarity is preserved.

Idea: Learn node embedding such that nearby nodes are close together in the network.

Given a node u, how do we define nearby nodes?

- $N_R(u)$... neighbourhood of u obtained by some strategy R
Given $G = (V, E)$

Our goal is to learn a mapping $z: u \rightarrow \mathbb{R}^d$

Log-likelihood objective:

$$\max_z \sum_{u \in V} \log P(N_R(u) \mid z_u)$$

where $N_R(u)$ is neighborhood of node u

Given node u, we want to learn feature representations predictive of nodes in its neighborhood $N_R(u)$
1. Run short fixed-length random walks starting from each node on the graph using some strategy R.

2. For each node u collect $N_R(u)$, the multiset* of nodes visited on random walks starting from u.

3. Optimize embeddings according to: Given node u, predict its neighbors $N_R(u)$

$$\max_z \sum_{u \in V} \log P(N_R(u) \mid z_u)$$

N$_R$(u) can have repeat elements since nodes can be visited multiple times on random walks.
Random Walk Optimization

$$\max \sum_{z} \log P(N_R(u)|z_u)$$

- **Assumption:** Conditional likelihood factorizes over the set of neighbors:

 $$\log P(N_R(u)|z_u) = \sum_{v \in N_R(u)} \log P(z_v | z_u)$$

- **Softmax parametrization:**

 $$P(z_v | z_u) = \frac{\exp(z_v \cdot z_u)}{\sum_{n \in V} \exp(z_n \cdot z_u)}$$

Why softmax?

We want node v to be most similar to node u (out of all nodes n).

Intuition: $\sum_i \exp(x_i) \approx \max_i \exp(x_i)$
Putting it all together:

\[
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} - \log \left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)} \right)
\]

sum over all nodes \(u \)

sum over nodes \(v \) seen on random walks starting from \(u \)

predicted probability of \(v \) appearing in random walk starting from \(u \)

Optimizing random walk embeddings =

Finding node embeddings \(z \) that minimize \(\mathcal{L} \)
Random Walk Optimization

But doing this naively is too expensive!!

\[
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} \log \left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)} \right)
\]

Nested sum over nodes gives \(O(|V|^2)\) complexity!
Random Walk Optimization

But doing this naively is too expensive!!

\[
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} - \log \left(\frac{\exp (z_u^\top z_v)}{\sum_{n \in V} \exp (z_u^\top z_n)} \right)
\]

The normalization term from the softmax is the culprit... can we approximate it?
Solution: Negative sampling

$$\log \left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)} \right)$$

$$\approx \log(\sigma(z_u^T z_v)) - \sum_{i=1}^{k} \log(\sigma(z_u^T z_{n_i}))$$

Why is the approximation valid?
Technically, this is a different objective. But Negative Sampling is a form of Noise Contrastive Estimation (NCE) which approx. maximizes the log probability of softmax.
New formulation corresponds to using a logistic regression (sigmoid func.) to distinguish the target node v from nodes n_i sampled from background distribution P_v.
Negative Sampling

\[
\log \left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)} \right)
\]

\[
\approx \log(\sigma(z_u^T z_v)) - \sum_{i=1}^{k} \log(\sigma(z_u^T z_{n_i})), n_i \sim PV
\]

- Sample \(k \) negative nodes proportional to degree
- Two considerations for \(k \) (# negative samples):
 1. Higher \(k \) gives more robust estimates
 2. Higher \(k \) corresponds to higher prior on negative events

In practice \(k = 5-20 \)
1. Run **short fixed-length** random walks starting from each node on the graph using some strategy R.

2. For each node u collect $N_R(u)$, the multiset of nodes visited on random walks starting from u.

3. Optimize embeddings using Stochastic Gradient Descent:

$$
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} - \log(P(v|z_u))
$$

We can efficiently approximate this using negative sampling!
So far we have described how to optimize embeddings given random walk statistics. What strategies should we use to run these random walks?

Simplest idea: Just run fixed-length, unbiased random walks starting from each node (i.e., DeepWalk from Perozzi et al., 2013).

- The issue is that such notion of similarity is too constrained.
- How can we generalize this?
Goal: Embed nodes with similar network neighborhoods close in the feature space

We frame this goal as prediction-task independent maximum likelihood optimization problem

Key observation: Flexible notion of network neighborhood $N_R(u)$ of node u leads to rich node embeddings

Develop biased 2$^\text{nd}$ order random walk R to generate network neighborhood $N_R(u)$ of node u
node2vec: Biased Walks

Idea: use flexible, biased random walks that can trade off between local and global views of the network (Grover and Leskovec, 2016).
Two classic strategies to define a neighborhood $N_R(u)$ of a given node u:

Walk of length 3 ($N_R(u)$ of size 3):

$N_{BFS}(u) = \{ s_1, s_2, s_3 \} \quad \text{Local microscopic view}$

$N_{DFS}(u) = \{ s_4, s_5, s_6 \} \quad \text{Global macroscopic view}$
Biased fixed-length random walk R that given a node u generates neighborhood $N_R(u)$

- Two parameters:
 - **Return parameter p:**
 - Return back to the previous node
 - **In-out parameter q:**
 - Moving outwards (DFS) vs. spreading (BFS)
 - Intuitively, q is the “ratio” of BFS vs. DFS
Biased 2nd-order random walks explore network neighborhoods:

- Rnd. walk just traversed edge \((s_1, w)\) and is now at \(w\)
- **Insight:** Neighbors of \(w\) can only be:

\begin{itemize}
 \item Same distance to \(s_1\)
 \item Farther from \(s_1\)
 \item Back to \(s_1\)
\end{itemize}

Idea: Remember where that walk came from
Walker came over edge \((s_1, w)\) and is at \(w\). Where to go next?

\[\frac{1}{p}, \frac{1}{q}, 1 \text{ are unnormalized probabilities} \]

- \(p, q\) model transition probabilities
 - \(p\) ... return parameter
 - \(q\) ... “walk away” parameter
Walker came over edge \((s_1, w)\) and is at \(w\).

Where to go next?

- **BFS-like** walk: Low value of \(p\)
- **DFS-like** walk: Low value of \(q\)

\(N_R(u)\) are the nodes visited by the biased walk
node2vec algorithm

1) Compute random walk probabilities
2) Simulate r random walks of length l starting from each node u
3) Optimize the node2vec objective using Stochastic Gradient Descent

Linear-time complexity.
All 3 steps are individually parallelizable
BFS vs. DFS

BFS: Micro-view of neighbourhood

DFS: Macro-view of neighbourhood
Experiments: Micro vs. Macro

Small network of interactions of characters in a novel:

p=1, q=2 Microscopic view of the network neighbourhood

p=1, q=0.5 Macroscopic view of the network neighbourhood

Figure 3: Complementary visualizations of Les Misérables co-appearance network generated by node2vec with label propagation. We use the Macro-F1 scores for comparing performance in Table 2 and the relative performance.
How does predictive performance change as we
- randomly remove a fraction of edges (left)
- randomly add a fraction of edges (right)
Other random walk ideas

(not covered in detailed here but for your reference)

- **Different kinds of biased random walks:**
 - Based on node attributes ([Dong et al., 2017](#)).
 - Based on a learned weights ([Abu-El-Haija et al., 2017](#)).

- **Alternative optimization schemes:**
 - Directly optimize based on 1-hop and 2-hop random walk probabilities (as in [LINE from Tang et al. 2015](#)).

- **Network preprocessing techniques:**
 - Run random walks on modified versions of the original network (e.g., [Ribeiro et al. 2017’s struct2vec](#), [Chen et al. 2016’s HARP](#)).
How to Use Embeddings

How to use embeddings z_i of nodes:

- **Clustering/community detection**: Cluster nodes/points based on z_i
- **Node classification**: Predict label $f(z_i)$ of node i based on z_i
- **Link prediction**: Predict edge (i, j) based on $f(z_i, z_j)$

Where we can: concatenate, avg, product, or take a difference between the embeddings:

- Concatenate: $f(z_i, z_j) = g([z_i, z_j])$
- Hadamard: $f(z_i, z_j) = g(z_i \ast z_j)$ (per coordinate product)
- Sum/Avg: $f(z_i, z_j) = g(z_i + z_j)$
- Distance: $f(z_i, z_j) = g(||z_i - z_j||_2)$
Basic idea: Embed nodes so that similarities in embedding space reflect node similarities in the original network.

Different notions of node similarity:
- Adjacency-based (i.e., similar if connected)
- Multi-hop similarity definitions.
- Random walk approaches *(covered today)*
So what method should I use..?

No one method wins in all cases....

- E.g., node2vec performs better on node classification while multi-hop methods perform better on link prediction (Goyal and Ferrara, 2017 survey)

Random walk approaches are generally more efficient

In general: Must choose def’n of node similarity that matches your application!