Large Scale Machine Learning: SVMs
New Topic: ML!

High dim. data
- Locality sensitive hashing
- Clustering
- Dimensionality reduction

Graph data
- PageRank, SimRank
- Community Detection
- Spam Detection

Infinite data
- Filtering data streams
- Web advertising
- Queries on streams

Machine learning
- SVM
- Decision Trees
- Perceptron, kNN

Apps
- Recommender systems
- Association Rules
- Duplicate document detection
Given some data:
- “Learn” a function to map from the input to the output
- **Given:**
 - Training examples \((x_i, y = f(x_i)) \) for some unknown function \(f \)
- **Find:**
 - A good approximation to \(f \)
Many Other ML Paradigms

- **Supervised:**
 - Given “labeled data” \{x, y\}, learn \(f(x) = y \)
- **Unsupervised:**
 - Given only “unlabeled data” \{x\}, learn \(f(x) \)
- **Semi-supervised:**
 - Given some labeled and some unlabeled data
- **Active learning:**
 - Whenever we predict \(f(x) = y \), we then receive true \(y^* \)
- **Transfer learning:**
 - Learn \(f(x) \) so that it works well on new domain \(f(z) \)
Would like to do **prediction**: estimate a function \(f(x) \) so that \(y = f(x) \)

Where \(y \) can be:
- **Real number**: Regression
- **Categorical**: Classification
- **Complex object**: Ranking of items, Parse tree, etc.

Data is labeled:
- Have many pairs \(\{(x, y)\} \)
 - \(x \) ... vector of binary, categorical, real valued features
 - \(y \) ... class: \{+1, -1\}, or a real number
Task: Given data \((X,Y)\) build a model \(f()\) to predict \(Y'\) based on \(X'\)

Strategy: Estimate \(y = f(x)\) on \((X,Y)\).

Hope that the same \(f(x)\) also works to predict unknown \(Y'\)

- The “hope” is called **generalization**
 - **Overfitting:** If \(f(x)\) predicts well \(Y\) but is unable to predict \(Y'\)

- We want to build a model that **generalizes** well to unseen data
1) Training data is drawn independently at random according to unknown probability distribution $P(x, y)$

2) The learning algorithm analyzes the examples and produces a classifier f

- Given new data (x, y) drawn from P, the classifier is given x and predicts $\hat{y} = f(x)$
- The loss $L(\hat{y}, y)$ is then measured

Goal of the learning algorithm:
Find f that minimizes expected loss $E_P[L]$
Why is it hard?
We estimate f on training data but want the f to work well on unseen future (i.e., test) data.
Minimizing the Loss

- **Goal:** Minimize the expected loss
 \[
 \min_f \mathbb{E}_P[\mathcal{L}]
 \]

- But, we don’t have access to \(P \) but only to training sample \(D \):
 \[
 \min_f \mathbb{E}_D[\mathcal{L}]
 \]

- So, we minimize the average loss on the training data:
 \[
 \min_f J(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(x_i), y_i)
 \]

Problem: Just memorizing the training data gives us a perfect model (with zero loss)
ML == Optimization

- **Given:**
 - A set of \(N \) training examples
 - \(\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \)
 - A loss function \(\mathcal{L} \)
- **Choose:** \(f_w(x) = w \cdot x + b \)
- **Find:**
 - The weight vector \(w \) that minimizes the expected loss on the training data

\[
J(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(w \cdot x_i + b, y_i)
\]
Problem: Step-wise Constant Loss function

Derivative is either 0 or ∞
Approximating the Loss

- Approximating the expected loss by a smooth function
 - Replace the original objective function by a surrogate loss function. E.g., hinge loss:

 \[\tilde{f}(w) = \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y^{(i)} f(x^{(i)})) \]

 When \(y = 1 \):
Example: Spam filtering

<table>
<thead>
<tr>
<th>viagra</th>
<th>learning</th>
<th>the</th>
<th>dating</th>
<th>nigeria</th>
<th>spam?</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{x}_1 = (1, 0, 1, 0, 0, 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$y_1 = 1$</td>
</tr>
<tr>
<td>\bar{x}_2 = (0, 1, 1, 0, 0, 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$y_2 = -1$</td>
</tr>
<tr>
<td>\bar{x}_3 = (0, 0, 0, 0, 0, 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$y_3 = 1$</td>
</tr>
</tbody>
</table>

Instance space $x \in X$ ($|X| = n$ data points)
- Binary or real-valued feature vector x of word occurrences
- d features (words + other things, $d \sim 100,000$)

Class $y \in Y$
- y: Spam (+1), Ham (-1)
Spam Detection

- $P(x, y)$: distribution of email messages x and their true labels y (“spam”, “ham”)
- Training sample: a set of email messages that have been labeled by the user
- Learning algorithm: What we study!
- f: The classifier output by the learning alg.
- Test point: A new email x (with its true, but hidden, label y)
- Loss function $\mathcal{L}(\hat{y}, y)$:

<table>
<thead>
<tr>
<th>predicted label \hat{y}</th>
<th>true label y</th>
</tr>
</thead>
<tbody>
<tr>
<td>spam</td>
<td>0</td>
</tr>
<tr>
<td>not spam</td>
<td>1</td>
</tr>
</tbody>
</table>
We will talk about the following methods:

- Support Vector Machines
- Decision trees

Main question:
How to efficiently train (build a model/find model parameters)?
Support Vector Machines
Support Vector Machines

- Want to separate “+” from “-” using a line

Data:

- Training examples:
 - \((x_1, y_1) \ldots (x_n, y_n)\)
- Each example \(i\):
 - \(x_i = (x_i^{(1)}, \ldots, x_i^{(d)})\)
 - \(x_i^{(j)}\) is real valued
 - \(y_i \in \{-1, +1\}\)
- Inner product:
 - \(w \cdot x = \sum_{j=1}^d w^{(j)} \cdot x^{(j)}\)

Which is best linear separator (defined by \(w, b)\)?
Distance from the separating hyperplane corresponds to the “confidence” of prediction

Example:

- We are more sure about the class of A and B than of C
The reason we define margin this way is due to theoretical convenience and existence of generalization error bounds that depend on the value of margin.
Why maximizing γ a good idea?

- Remember: The Dot product

$$A \cdot B = \|A\| \cdot \|B\| \cdot \cos \theta$$

![Diagram of vectors A and B with angle θ and vector $||A|| \cos \theta$]
Why maximizing γ a good idea?

- **Dot product**
 \[A \cdot B = ||A|| ||B|| \cos \theta \]
- **What is $w \cdot x_1$, $w \cdot x_2$?**

In this case
- $\gamma_1 \approx ||w||^2$

In this case
- $\gamma_2 \approx 2||w||^2$

- **So, γ roughly corresponds to the margin**

- **Bottom line:** Bigger γ bigger the separation
Let:

- **Line L**: \(w \cdot x + b = 0 \)
 \[w^{(1)}x^{(1)} + w^{(2)}x^{(2)} + b = 0 \]
- \(w = (w^{(1)}, w^{(2)}) \)
- **Point A** = \((x_{A}^{(1)}, x_{A}^{(2)}) \)
- **Point M** on a line = \((x_{M}^{(1)}, x_{M}^{(2)}) \)

Distance from a point to a line
\[
M(1) = (x_{M}^{(1)}, x_{M}^{(2)})
\]
\[
d(A, L) = |AH|
\]
\[
= |(A-M) \cdot w|
\]
\[
= |(x_{A}^{(1)} - x_{M}^{(1)}) w^{(1)} + (x_{A}^{(2)} - x_{M}^{(2)}) w^{(2)}|
\]
\[
= |x_{A}^{(1)} w^{(1)} + x_{A}^{(2)} w^{(2)} + b|
\]
\[
= |w \cdot A + b|
\]

Note we assume \(\|w\|_2 = 1 \)

\[
\text{Remember } x_{M}^{(1)}w^{(1)} + x_{M}^{(2)}w^{(2)} = -b \\
since M \text{ belongs to line } L
\]
- Prediction = $\text{sign}(w \cdot x + b)$
- “Confidence” = $(w \cdot x + b) y$
- For i-th datapoint: $\gamma_i = (w \cdot x_i + b) y_i$
- Want to solve:
 $$\max_{w,b} \min_i \gamma_i$$
- Can rewrite as
 $$\max_{w,\gamma} \gamma$$
 s.t. $\forall i, y_i (w \cdot x_i + b) \geq \gamma$
Support Vector Machine

- Maximize the margin:
 - Good according to intuition, theory (c.f. “VC dimension”) and practice

\[
\begin{align*}
\max_{w, \gamma} & \quad \gamma \\
\text{s.t.} & \quad \forall i, y_i(w \cdot x_i + b) \geq \gamma
\end{align*}
\]

- \(\gamma \) is margin ... distance from the separating hyperplane

Maximizing the margin
Support Vector Machines: Deriving the margin
Separating hyperplane is defined by the support vectors

- Points on +/- planes from the solution
- If you knew these points, you could ignore the rest
- Generally, $d+1$ support vectors (for d dim. data)
Problem:
- Let \((w \cdot x + b)y = \gamma\)
- then \((2w \cdot x + 2b)y = 2\gamma\)
- Scaling \(w\) increases margin!

Solution:
- Work with normalized \(w\):
 \[
 \gamma = \left(\frac{w}{\|w\|} \cdot x + b\right)y
 \]
- Let’s also require support vectors \(x_j\)
to be on the plane defined by:
 \[
 w \cdot x_j + b = \pm 1
 \]
Want to maximize margin!

What is the relation between x_1 and x_2?

\[x_1 = x_2 + 2\gamma \frac{w}{||w||} \]

We also know:

\[w \cdot x_1 + b = +1 \]
\[w \cdot x_2 + b = -1 \]

So:

\[w \cdot x_1 + b = +1 \]
\[w \left(x_2 + 2\gamma \frac{w}{||w||}\right) + b = +1 \]
\[w \cdot x_2 + b + 2\gamma \frac{w \cdot w}{||w||} = +1 \]

\[\gamma = \frac{||w||}{w \cdot w} = \frac{1}{||w||} \]

Note:
\[w \cdot w = ||w||^2 \]
Maximizing the Margin

- **We started with**
 \[
 \max_{w,\gamma} \gamma
 \]
 \[s.t. \forall i, y_i (w \cdot x_i + b) \geq \gamma\]
 But \(w\) can be arbitrarily large!

- **We normalized and...**
 \[
 \arg \max \gamma = \arg \max \frac{1}{\|w\|} = \arg \min \|w\| = \arg \min \frac{1}{2} \|w\|^2
 \]

- **Then:**
 \[
 \min_w \frac{1}{2} \|w\|^2
 \]
 \[s.t. \forall i, y_i (w \cdot x_i + b) \geq 1\]

This is called SVM with “hard” constraints
If data is not separable introduce penalty:

\[\min_w \frac{1}{2} \|w\|^2 + C \cdot (\# \text{number of mistakes}) \]

\[\text{s.t. } \forall i, y_i (w \cdot x_i + b) \geq 1 \]

- Minimize \(\|w\|^2 \) plus the number of training mistakes
- Set \(C \) using cross validation

How to penalize mistakes?
- All mistakes are not equally bad!
Support Vector Machines

- **Introduce slack variables** ξ_i

\[
\min_{w,b,\xi \geq 0} \frac{1}{2} \|w\|^2 + C \cdot \sum_{i=1}^{n} \xi_i
\]

\[\text{s.t.} \forall i, y_i (w \cdot x_i + b) \geq 1 - \xi_i\]

- If point x_i is on the wrong side of the margin then get penalty ξ_i

For each data point:
If margin ≥ 1, don’t care
If margin < 1, pay linear penalty
Slack Penalty C

$$\min_w \frac{1}{2} \|w\|^2 + C \cdot (# \text{number of mistakes})$$
$$s.t. \forall i, y_i (w \cdot x_i + b) \geq 1$$

- **What is the role of slack penalty C:**
 - $C=\infty$: Only want to w, b that separate the data
 - $C=0$: Can set ξ_i to anything, then $w=0$ (basically ignores the data)
Support Vector Machines

- SVM in the “natural” form

\[\arg \min_{w,b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \max\{0, 1 - y_i (w \cdot x_i + b)\}\]

Margin

Regularization parameter

Empirical loss L (how well we fit training data)

- SVM uses “Hinge Loss”:

\[\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i\]

\[\text{s.t. } \forall i, y_i \cdot (w \cdot x_i + b) \geq 1 - \xi_i\]

Hinge loss: \(\max\{0, 1-z\}\)

0/1 loss

penalty
Support Vector Machines: How to compute the margin?
SVM: How to estimate w?

$$\min_{w,b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \xi_i$$

$$s.t. \forall i, y_i \cdot (x_i \cdot w + b) \geq 1 - \xi_i$$

- **Want to estimate w and b!**
 - **Standard way:** Use a solver!
 - **Solver:** software for finding solutions to “common” optimization problems
 - **Use a quadratic solver:**
 - Minimize quadratic function
 - Subject to linear constraints
 - **Problem:** Solvers are inefficient for big data!
SVM: How to estimate w?

- Want to minimize $J(w,b)$:

$$J(w,b) = \frac{1}{2} \sum_{j=1}^{d} \left(w^{(j)} \right)^2 + C \sum_{i=1}^{n} \max\left\{ 0, 1 - y_i \left(\sum_{j=1}^{d} w^{(j)} x_i^{(j)} + b \right) \right\}$$

Empirical loss $L(x_i, y_i)$

- Compute the gradient $\nabla(j)$ w.r.t. $w^{(j)}$

$$\nabla J^{(j)} = \frac{\partial L(w,b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$$

$$\frac{\partial L(x_i, y_i)}{\partial w^{(j)}} = 0 \quad \text{if } y_i (w \cdot x_i + b) \geq 1$$

$$= -y_i x_i^{(j)} \quad \text{else}$$
SVM: How to estimate \(w \)?

- **Gradient descent:**

 Iterate until convergence:

 - For \(j = 1 \ldots d \)

 - **Evaluate:** \(\nabla J(j) = \frac{\partial f(w, b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}} \)

 - **Update:**

 \(w'(j) \leftarrow w(j) - \eta \nabla J(j) \nabla J(j) \leftarrow w' \)

- **Problem:**

 - Computing \(\nabla J(j) \) takes \(O(n) \) time!

 - \(n \) ... size of the training dataset

\(\eta \) ... learning rate parameter

\(C \) ... regularization parameter
Stochastic Gradient Descent

Instead of evaluating gradient over all examples evaluate it for each individual training example

\[
\nabla J^{(j)}(x_i) = w^{(j)} + C \cdot \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}
\]

Stochastic gradient descent:

Iterate until convergence:

• For \(i = 1 \ldots n \)
 • For \(j = 1 \ldots d \)
 • Compute: \(\nabla J^{(j)}(x_i) \)
 • Update: \(w^{(j)} \leftarrow w^{(j)} - \eta \nabla J^{(j)}(x_i) \)

We just had:

\[
\nabla J^{(j)} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}
\]

Notice: no summation over \(i \) anymore
Support Vector Machines: Example
Example by Leon Bottou:

- **Reuters RCV1** document corpus
 - Predict a category of a document
 - One *vs.* the rest classification
- \(n = 781,000 \) training examples (documents)
- 23,000 test examples
- \(d = 50,000 \) features
 - One feature per word
 - Remove stop-words
 - Remove low frequency words
Questions:

(1) Is SGD successful at minimizing $J(w,b)$?
(2) How quickly does SGD find the min of $J(w,b)$?
(3) What is the error on a test set?

<table>
<thead>
<tr>
<th></th>
<th>Training time</th>
<th>Value of $J(w,b)$</th>
<th>Test error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard SVM</td>
<td>23,642 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
<tr>
<td>“Fast SVM”</td>
<td>66 secs</td>
<td>0.2278</td>
<td>6.03%</td>
</tr>
<tr>
<td>SGD-SVM</td>
<td>1.4 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
</tbody>
</table>

(1) SGD-SVM is successful at minimizing the value of $J(w,b)$
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable
Optimization “Accuracy”

For optimizing $J(w, b)$ within reasonable quality
SGD-SVM is super fast
Practical Considerations

- **Need to choose learning rate** η and t_0

\[w_{t+1} \leftarrow w_t - \frac{\eta_t}{t + t_0} \left(w_t + C \frac{\partial L(x_i, y_i)}{\partial w} \right) \]

- **Leon suggests:**
 - Choose t_0 so that the expected initial updates are comparable with the expected size of the weights
 - **Choose η:**
 - Select a **small subsample**
 - Try various rates η (e.g., 10, 1, 0.1, 0.01, ...)
 - Pick the one that most reduces the cost
 - Use η for next 100k iterations on the full dataset
Practical Considerations

- **Sparse Linear SVM:**
 - Feature vector x_i is sparse (contains many zeros)
 - Do not do: $x_i = [0, 0, 0, 1, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, \ldots]$
 - But represent x_i as a sparse vector $x_i = [(4, 1), (9, 5), \ldots]$
 - Can we do the SGD update more efficiently?
 - \[w \leftarrow w - \eta \left(w + C \frac{\partial L(x_i, y_i)}{\partial w} \right) \]
 - Approximated in 2 steps:
 - \[w \leftarrow w - \eta C \frac{\partial L(x_i, y_i)}{\partial w} \] cheap: x_i is sparse and so few coordinates j of w will be updated
 - \[w \leftarrow w(1 - \eta) \] expensive: w is not sparse, all coordinates need to be updated
Practical Considerations

- **Solution 1**: \(\mathbf{w} = s \cdot \mathbf{v} \)
 - Represent vector \(\mathbf{w} \) as the product of scalar \(s \) and vector \(\mathbf{v} \)
 - Then the update procedure is:
 - \((1)\ \mathbf{v} = \mathbf{v} - \eta C \frac{\partial L(x_i, y_i)}{\partial \mathbf{w}}\)
 - \((2)\ s = s(1 - \eta)\)

- **Solution 2**:
 - Perform only step \((1)\) for each training example
 - Perform step \((2)\) with lower frequency and higher \(\eta\)

Two step update procedure:

\[(1) \ \mathbf{w} \leftarrow \mathbf{w} - \eta C \frac{\partial L(x_i, y_i)}{\partial \mathbf{w}}\]
\[(2) \ \mathbf{w} \leftarrow \mathbf{w}(1 - \eta)\]
Stopping criteria:

How many iterations of SGD?

- Early stopping with cross validation
 - Create a validation set
 - Monitor cost function on the validation set
 - Stop when loss stops decreasing

- Early stopping
 - Extract two (very) small sets of training data A and B
 - Train on A, stop by validating on B
 - Number of training epochs on A is an estimate of k
 - Train for k epochs on the full dataset
Idea 1:
One against all
Learn 3 classifiers
- + vs. {o, -}
- - vs. {o, +}
- o vs. {+, -}
Obtain:
\[w_+ b_+ , w_- b_- , w_o b_o \]

How to classify?
Return class \(c \)
\[\arg \max_c w_c x + b_c \]
Idea 2: Learn 3 sets of weights simultaneously!

- For each class c estimate w_c, b_c
- Want the correct class y_i to have highest margin:

$$w_{y_i} x_i + b_{y_i} \geq 1 + w_c x_i + b_c \quad \forall c \neq y_i \, , \, \forall i$$

(x, y)
Multiclass SVM

- **Optimization problem:**

\[
\begin{align*}
\min_{w,b} & \quad \frac{1}{2} \sum_c \|w_c\|^2 + C \sum_{i=1}^n \xi_i \\
\text{s.t.} & \quad w_{y_i} \cdot x_i + b_{y_i} \geq w_c \cdot x_i + b_c + 1 - \xi_i, \quad \forall c \neq y_i, \forall i \\
\xi_i & \geq 0, \forall i
\end{align*}
\]

- To obtain parameters \(w_c, b_c\) (for each class \(c\)) we can use similar techniques as for 2 class SVM.

- SVM is widely perceived a very powerful learning algorithm.
Support Vector Machines: Example
Online Learning

- **New setting: Online Learning**
 - Allows for modeling problems where we have a continuous stream of data
 - We want an algorithm to learn from it and slowly adapt to the changes in data

- **Idea: Do slow updates to the model**
 - SGD-SVM makes updates if misclassifying a datapoint
 - **So:** First train the classifier on training data. Then for every example from the stream, if we misclassify, update the model (using a small learning rate)
Example: Shipping Service

- **Protocol:**
 - User comes and tell us origin and destination
 - We offer to ship the package for some money ($10 - $50)
 - Based on the price we offer, sometimes the user uses our service ($y = 1$), sometimes they don't ($y = -1$)

- **Task:** Build an algorithm to optimize what price we offer to the users

- **Features x capture:**
 - Information about user
 - Origin and destination

- **Problem:** Will user accept the price?
Example: Shipping Service

- Model whether user will accept our price:
 \[y = f(x; w) \]
 - Accept: \(y = 1 \), Not accept: \(y = -1 \)
 - Build this model with say Perceptron or SVM
- The website that runs continuously
- Online learning algorithm would do something like
 - User comes
 - User is represented as an \((x, y)\) pair where
 - \(x \): Feature vector including price we offer, origin, destination
 - \(y \): If they chose to use our service or not
 - The algorithm updates \(w \) using just the \((x, y)\) pair
 - Basically, we update the \(w \) parameters every time we get some new data
We discard this idea of a data “set”
Instead we have a continuous stream of data

Further comments:
- For a major website where you have a massive stream of data then this kind of algorithm is pretty reasonable
- Don’t need to deal with all the training data
- If you had a small number of users you could save their data and then run a normal algorithm on the full dataset
 - Doing multiple passes over the data
Online Algorithms

- An online algorithm can adapt to changing user preferences
- For example, over time users may become more price sensitive
- The algorithm adapts and learns this
- So the system is dynamic