A General Perspective on Graph Neural Networks
Modern ML Toolbox

Modern deep learning toolbox is designed for simple sequences & grids.
Data is stored in **Relational Tables**

- **Commerce**
- **Finance**
- **Health care**
Relational data is a graph!
But networks are far more complex!

- Arbitrary size and complex topological structure (i.e., no spatial locality like grids)
- No fixed node ordering or reference point
- Often dynamic and have multimodal features
Graph Neural Networks
A Naïve Approach

- Join adjacency matrix and features
- Feed them into a deep neural net:

Issues with this idea:
- $O(|V|)$ parameters
- Not applicable to graphs of different sizes
- Sensitive to node ordering
CNN on an image:

Goal is to generalize convolutions to graphs

Credit: Stanford CS224W
Single Convolutional neural network (CNN) layer with 3x3 filter:

Idea: transform information at the neighbors and combine it:
- Transform “messages” h_i from neighbors: $W_i h_i$
- Add them up: $\sum_i W_i h_i$

Credit: Stanford CS224W
Idea: Node’s neighborhood defines a computation graph

Determine node computation graph
Propagate and transform information

Learn how to propagate information across the graph to compute node features

Credit: Stanford CS224W
Key idea: Generate node embeddings based on local network neighborhoods.
Intuition: Nodes aggregate information from their neighbors using neural networks.
Intuition: Network neighborhood defines a computation graph

Every node defines a computation graph based on its neighborhood!

Credit: Stanford CS224W
Model can be of arbitrary depth:

- Nodes have embeddings at each layer
- Layer-0 embedding of node u is its input feature, x_u
- Layer-k embedding gets information from nodes that are K hops away
Neighborhood aggregation: Key distinctions are in how different approaches aggregate information across the layers.

What is in the box?

TARGET NODE

INPUT GRAPH

Credit: Stanford CS224W
Basic approach: Average information from neighbors and apply a neural network

1. Average messages from neighbors
2. Apply neural network

Credit: Stanford CS224W
Assume we have a graph G:

- V is the vertex set
- A is the adjacency matrix (assume binary)
- $X \in \mathbb{R}^{m \times |V|}$ is a matrix of node features
- v: a node in V; $N(v)$: the set of neighbors of v.

Node features:

- Relational data: User/item descriptions, categories
- Social networks: User profile, User image
- Biological networks: Gene expression profiles, gene functional information
- What if there is no node feature in the graph dataset?
Basic approach: Average neighbor messages and apply a neural network

- Initial 0-th layer embeddings are equal to node features:
 \[h_v^0 = x_v \]

- Embedding of \(v \) at layer \(l \):
 \[h_v^{(l+1)} = \sigma(W_l \sum_{u \in N(v)} \frac{h_u^{(l)}}{|N(v)|} + B_l h_v^{(l)}), \forall l \in \{0, ..., L - 1\} \]

- Average of neighbor’s previous layer embeddings:
 \[z_v = h_v^{(L)} \]

- Non-linearity (e.g., ReLU):
 \[h_v^{(l+1)} = \sigma(W_l \sum_{u \in N(v)} \frac{h_u^{(l)}}{|N(v)|} + B_l h_v^{(l)}), \forall l \in \{0, ..., L - 1\} \]

- Total number of layers:
 \[z_v = h_v^{(L)} \]

Credit: Stanford CS224W
How do we train the model to generate embeddings?

Need to define a loss function on the embeddings

Credit: Stanford CS224W
Node embedding z_v is a function of input graph

Supervised setting: we want to minimize the loss \mathcal{L}:

$$\min_{\Theta} \mathcal{L}(y, f(z_v))$$

- y: node label
- \mathcal{L} could be L2 if y is real number, or cross entropy if y is categorical
Model Parameters

$$h_v^{(0)} = x_v$$

$$h_v^{(l+1)} = \sigma \left(W_l \sum_{u \in N(v)} \frac{h_u^{(l)}}{|N(v)|} + B_l h_v^{(l)} \right), \forall l \in \{0, ..., L - 1\}$$

$$z_v = h_v^{(L)}$$

- We can feed these embeddings into any loss function and run SGD to train the weight parameters

- **Trainable weight matrices** (i.e., what we learn)

Final node embedding

$$h_v^{l} : \text{the hidden representation of node } v \text{ at layer } l$$

- **W_l**: weight matrix for neighborhood aggregation
- **B_l**: weight matrix for transforming hidden vector of self

Credit: Stanford CS224W
Directly train the model for a supervised task (e.g., node classification)

Is user going to churn in the next week?

E.g., a relational graph of users, sales, products
Directly train the model for a supervised task (e.g., node classification)

- Use cross entropy loss

$$L = \sum_{v \in V} y_v \log(\sigma(z_v^T \theta)) + (1 - y_v) \log(1 - \sigma(z_v^T \theta))$$

Credit: Stanford CS224W
Designing a GNN
GNN Layer = Message + Aggregation

- Different instantiations under this perspective
- GCN, GraphSAGE, GAT, ...

GNN Layer 1

(1) Message

(2) Aggregation
Connect GNN layers into a GNN
- Stack layers sequentially
- Ways of adding skip connections

(3) Layer connectivity
Idea: Raw input graph ≠ computational graph

- Graph feature augmentation
- Graph structure augmentation

(4) Graph augmentation
How do we train a GNN

- Supervised/Unsupervised objectives
- Node/Edge/Graph level objectives
A General GNN Framework (5)

(5) Learning objective

(2) Aggregation

(1) Message

(3) Layer connectivity

GNN Layer 1

GNN Layer 2

(4) Graph augmentation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020
A Single Layer of a GNN
GNN Layer = Message + Aggregation

- Different instantiations under this perspective
- GCN, GraphSAGE, GAT, ...

J. You, R. Ying, J. Leskovec. *Design Space of Graph Neural Networks*, NeurIPS 2020
A Single GNN Layer

- **Idea of a GNN Layer:**
 - Compress a set of vectors into a single vector
 - Two step process:
 - (1) Message
 - (2) Aggregation

Input node embedding $h_v^{(l-1)}$, $h_{u \in N(v)}^{(l-1)}$

Output node embedding $h_v^{(l)}$

Node v
(1) Message computation

- **Message function:** \(m_{u}^{(l)} = MSG^{(l)} \left(h_{u}^{(l-1)} \right) \)
 - **Intuition:** Each node will create a message, which will be sent to other nodes later
 - **Example:** A Linear layer \(m_{u}^{(l)} = W^{(l)} h_{u}^{(l-1)} \)
 - Multiply node features with weight matrix \(W^{(l)} \)

(2) Aggregation
(2) Aggregation

Intuition: Each node will aggregate the messages from node v's neighbors

$$h_v^{(l)} = \text{AGG}^{(l)} \left(\{ m_u^{(l)}, u \in N(v) \} \right)$$

Example: Sum(\cdot), Mean(\cdot) or Max(\cdot) aggregator

$$h_v^{(l)} = \text{Sum}(\{ m_u^{(l)}, u \in N(v) \})$$
Message Aggregation: Issue

- **Issue**: Information from node \(v \) itself **could get lost**
 - Computation of \(h_v^{(l)} \) does not directly depend on \(h_v^{(l-1)} \)

- **Solution**: Include \(h_v^{(l-1)} \) when computing \(h_v^{(l)} \)
 - **(1) Message**: compute message from node \(v \) itself
 - Usually, a **different message computation** will be performed
 \[
 m_u^{(l)} = W^{(l)} h_u^{(l-1)} \quad \quad m_v^{(l)} = B^{(l)} h_v^{(l-1)}
 \]

 - **(2) Aggregation**: After aggregating from neighbors, we can aggregate the message from node \(v \) itself
 - Via **concatenation** or **summation**

\[
 h_v^{(l)} = \text{CONCAT} \left(\text{AGG} \left(\left\{ m_u^{(l)} , u \in N(v) \right\} \right), m_v^{(l)} \right)
\]

First aggregate from neighbors

Then aggregate from node itself
Putting things together:

- **(1) Message**: each node computes a message
 \[m_u^{(l)} = MSG^{(l)} \left(h_u^{(l-1)} \right), u \in \{N(v) \cup v\} \]

- **(2) Aggregation**: aggregate messages from neighbors
 \[h_v^{(l)} = AGG^{(l)} \left(\{m_u^{(l)}, u \in N(v)\}, m_v^{(l)} \right) \]

- **Nonlinearity (activation)**: Adds expressiveness
 - Often written as \(\sigma(\cdot): \text{ReLU}(\cdot), \text{Sigmoid}(\cdot), \ldots \)
 - Can be added to message or aggregation
Classical GNN Layers: GCN (1)

- (1) Graph Convolutional Networks (GCN)

\[h_v^{(l)} = \sigma \left(W^{(l)} \sum_{u \in N(v)} \frac{h_u^{(l-1)}}{|N(v)|} \right) \]

- How to write this as Message + Aggregation?

\[h_v^{(l)} = \sigma \left(\sum_{u \in N(v)} W^{(l)} \frac{h_u^{(l-1)}}{|N(v)|} \right) \]
(1) Graph Convolutional Networks (GCN)

\[
h^{(l)}_v = \sigma \left(\sum_{u \in N(v)} W^{(l)} \frac{h^{(l-1)}_u}{|N(v)|} \right)
\]

- **Message:**
 - Each Neighbor: \(m^{(l)}_u = \frac{1}{|N(v)|} W^{(l)} h^{(l-1)}_u \)

- **Aggregation:**
 - Sum over messages from neighbors, then apply activation
 - \(h^{(l)}_v = \sigma \left(\text{Sum} \left(\{ m^{(l)}_u, u \in N(v) \} \right) \right) \)

Normalized by node degree
(In the GCN paper they use a slightly different normalization)
Classical GNN Layers: GraphSAGE

(2) GraphSAGE

\[h_v^{(l)} = \sigma \left(W^{(l)} \cdot \text{CONCAT} \left(h_v^{(l-1)}, \text{AGG} \left(\{ h_u^{(l-1)}, \forall u \in N(v) \} \right) \right) \right) \]

How to write this as Message + Aggregation?

- **Message** is computed within the \(\text{AGG}(\cdot) \)
- **Two-stage aggregation**
 - **Stage 1:** Aggregate from node neighbors
 \[h_{N(v)}^{(l)} \leftarrow \text{AGG} \left(\{ h_u^{(l-1)}, \forall u \in N(v) \} \right) \]
 - **Stage 2:** Further aggregate over the node itself
 \[h_v^{(l)} \leftarrow \sigma \left(W^{(l)} \cdot \text{CONCAT}(h_v^{(l-1)}, h_{N(v)}^{(l)}) \right) \]
(3) Graph Attention Networks

\[
 h_v^{(l)} = \sigma \left(\sum_{u \in N(v)} \alpha_{vu} W^{(l)} h_u^{(l-1)} \right)
\]

- **In GCN / GraphSAGE**
 - \(\alpha_{vu} = \frac{1}{|N(v)|} \) is the **weighting factor (importance)** of node \(u \)'s message to node \(v \)
 - \(\Rightarrow \) \(\alpha_{vu} \) is defined **explicitly** based on the structural properties of the graph (node degree)
 - \(\Rightarrow \) All neighbors \(u \in N(v) \) are equally important to node \(v \)
Can we do better than simple neighborhood aggregation?

Can we let weighting factors α_{vu} to be learned?

- **Goal:** Specify **arbitrary importance** to different neighbors of each node in the graph
- **Idea:** Compute embedding $h^{(l)}_v$ of each node in the graph following an **attention strategy**:
 - Implicitly specify different weights to different nodes in a neighborhood
Let α_{vu} be computed as a byproduct of an attention mechanism a:

1. Let a compute attention coefficients e_{vu} across pairs of nodes u, v based on their messages:

$$e_{vu} = a(W(l)h_u^{(l-1)}, W(l)h_v^{(l-1)})$$

- e_{vu} indicates the importance of u's message to node v

$$e_{AB} = a(W(l)h_A^{(l-1)}, W(l)h_B^{(l-1)})$$
Attention Mechanism (2)

- **Normalize** e_{vu} into the final attention weight α_{vu}
 - Use the **softmax** function, so that $\sum_{u \in N(v)} \alpha_{vu} = 1$:
 $$\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$$

- **Weighted sum** based on the final attention weight α_{vu}
 $$h_v^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} W^{(l)} h_u^{(l-1)})$$

Weighted sum using $\alpha_{AB}, \alpha_{AC}, \alpha_{AD}$:
$$h_A^{(l)} = \sigma(\alpha_{AB} W^{(l)} h_B^{(l-1)} + \alpha_{AC} W^{(l)} h_C^{(l-1)} + \alpha_{AD} W^{(l)} h_D^{(l-1)})$$
What is the form of attention mechanism a?

- E.g., use a simple single-layer neural network
 - a have trainable parameters (weights in the Linear layer)

$$e_{AB} = a \left(W^{(l)} h_A^{(l-1)}, W^{(l)} h_B^{(l-1)} \right)$$
$$= \text{Linear} \left(\text{Concat} \left(W^{(l)} h_A^{(l-1)}, W^{(l)} h_B^{(l-1)} \right) \right)$$

- Parameters of a are trained jointly:
 - Learn the parameters together with weight matrices (i.e., other parameter of the neural net $W^{(l)}$) in an end-to-end fashion
Graph Manipulation in GNNs
Idea: Raw input graph ≠ computational graph

- Graph feature augmentation
- Graph structure manipulation

(4) Graph manipulation
Why Manipulate Graphs

Our assumption so far has been

- Raw input graph = computational graph

Reasons for breaking this assumption

- Feature level:
 - The input graph lacks features → feature augmentation

- Structure level:
 - The graph is too sparse → inefficient message passing
 - The graph is too dense → message passing is too costly
 - The graph is too large → cannot fit the computational graph into a GPU

- It’s just unlikely that the input graph happens to be the optimal computation graph for embeddings
Graph Manipulation Approaches

- **Graph Feature manipulation**
 - The input graph lacks features → feature augmentation

- **Graph Structure manipulation**
 - The graph is too sparse → Add virtual nodes / edges
 - The graph is too dense → Sample neighbors when doing message passing
 - The graph is too large → Sample subgraphs to compute embeddings
 - Will cover later in lecture: Scaling up GNNs
Why do we need feature augmentation?

- **(1) Input graph does not have node features**
 - This is common when we only have the adj. matrix
- **Standard approaches:**
- **a) Assign constant values to nodes**

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Why do we need feature augmentation?

- **(1) Input graph does not have node features**
 - This is common when we only have the adj. matrix

- **Standard approaches:**
 - b) Assign unique IDs to nodes
 - These IDs are converted into **one-hot vectors**

```
[0, 0, 0, 0, 1, 0]
```

Total number of IDs = 6
Feature Augmentation on Graphs

- **Feature augmentation:** constant vs. one-hot

<table>
<thead>
<tr>
<th></th>
<th>Constant node feature</th>
<th>One-hot node feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant node feature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expressive power</td>
<td>Medium. All the nodes are identical, but GNN can still learn from the graph structure</td>
<td>High. Each node has a unique ID, so node-specific information can be stored</td>
</tr>
<tr>
<td>Inductive learning (Generalize to unseen nodes)</td>
<td>High. Simple to generalize to new nodes: we assign constant feature to them, then apply our GNN</td>
<td>Low. Cannot generalize to new nodes: new nodes introduce new IDs, GNN doesn’t know how to embed unseen IDs</td>
</tr>
<tr>
<td>Computational cost</td>
<td>Low. Only 1 dimensional feature</td>
<td>High. (O(</td>
</tr>
<tr>
<td>Use cases</td>
<td>Any graph, inductive settings (generalize to new nodes)</td>
<td>Small graph, transductive settings (no new nodes)</td>
</tr>
</tbody>
</table>
Why do we need feature augmentation?

- (2) Certain features can help GNN learning
- Other commonly used augmented features:
 - Node degree
 - PageRank
 - Clustering coefficient
 - …

- Any useful graph statistics can be used!
Motivation: Augment sparse graphs

(1) Add virtual edges

- Common approach: Connect 2-hop neighbors via virtual edges
- Intuition: Instead of using adj. matrix A for GNN computation, use $A + A^2$

Use cases: Bipartite graphs

- Author-to-papers (they authored)
- 2-hop virtual edges make an author-author collaboration graph
Motivation: Augment sparse graphs

(2) Add virtual nodes

- The virtual node will connect to all the nodes in the graph
 - Suppose in a sparse graph, two nodes have shortest path distance of 10
 - After adding the virtual node, all the nodes will have a distance of 2
 - Node A – Virtual node – Node B

Benefits: Greatly improves message passing in sparse graphs
Previously:

- All the nodes are used for message passing

New idea: (Randomly) sample a node’s neighborhood for message passing
For example, we can randomly choose 2 neighbors to pass messages

- Only nodes B and D will pass message to A
Next time when we compute the embeddings, we can sample different neighbors

- Only nodes C and D will pass message to A
In expectation, we can get embeddings similar to the case where all the neighbors are used

- **Benefits**: greatly reduce computational cost
- And in practice it works great!