Supervised Learning

- Would like to do prediction: estimate a function $f(x)$ so that $y = f(x)$

- Where y can be:
 - **Real number**: Regression
 - **Categorical**: Classification
 - **Complex object**:
 - Ranking of items, Parse tree, etc.

- Data is labeled:
 - Have many pairs $\{(x, y)\}$
 - x ... vector of binary, categorical, real valued features
 - y ... class: $\{+1, -1\}$, or a real number
 Supervised Learning

- **Task**: Given data \((X,Y)\) build a model \(f\) to predict \(Y'\) based on \(X'\)

- **Strategy**: Estimate \(y = f(x)\) on \((X,Y)\).

 Hope that the same \(f(x)\) also works to predict unknown \(Y'\)

 - The “hope” is called **generalization**
 - **Overfitting**: If \(f(x)\) predicts \(Y\) well but is unable to predict \(Y'\)
 - **We want to build a model that generalizes well to unseen data**
1) Training data is drawn independently at random according to unknown probability distribution $P(x, y)$

2) The learning algorithm analyzes the examples and produces a classifier f

Given new data (x, y) drawn from P, the classifier is given x and predicts $\hat{y} = f(x)$

The loss $\mathcal{L}(\hat{y}, y)$ is then measured

Goal of the learning algorithm:
Find f that minimizes expected loss $E_P[\mathcal{L}]$
Formal Setting

Why is it hard?
We estimate f on training data but want the f to work well on unseen future (i.e., test) data
Goal: Minimize the expected loss

\[\min_f \mathbb{E}_P[\mathcal{L}] \]

But we don’t have access to \(P \) -- we only know the training sample \(D \):

\[\min_f \mathbb{E}_D[\mathcal{L}] \]

So, we minimize the average loss on the training data:

\[\min_f J(f) = \min_f \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(x_i), y_i) \]

Problem: Just memorizing the training data gives us a perfect model (with zero loss)
Given:

- A set of N training examples:
 - $\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\}$
- A loss function \mathcal{L}

Choose the model: $f_w(x) = w \cdot x + b$

Find:

- The weight vector w that minimizes the expected loss on the training data

\[
J(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(w \cdot x_i + b, y_i)
\]
Problem: Step-wise Constant Loss function

Derivative is either 0 or ∞
Approximating the expected loss by a smooth function

Replace the original objective function by a surrogate loss function. E.g., hinge loss:

\[\tilde{J}(w) = \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y^{(i)} f(x^{(i)})) \]

When \(y = 1 \):
Support Vector Machines
Support Vector Machines

- Want to separate “+” from “-” using a line

Data:
- Training examples:
 - \((x_1, y_1) \ldots (x_n, y_n)\)
- Each example \(i\):
 - \(x_i = (x_i^{(1)}, \ldots, x_i^{(d)})\)
 - \(x_i^{(j)}\) is real valued
 - \(y_i \in \{-1, +1\}\)
- Inner product:
 \[
 w \cdot x = \sum_{j=1}^{d} w^{(j)} \cdot x^{(j)}
 \]

Which is best linear separator (defined by \(w,b\))?
Largest Margin

- Distance from the separating hyperplane corresponds to the “confidence” of prediction

Example:
- We are more sure about the class of A and B than of C
The reason we define margin this way is due to theoretical convenience and existence of generalization error bounds that depend on the value of margin.
Why is maximizing γ a good idea?

- **Remember: The Dot product**

$$A \cdot B = ||A|| \cdot ||B|| \cdot \cos \theta$$

![Diagram of vectors A and B with angle θ and their magnitudes and dot product calculation]

$$||A|| = \sqrt{\sum_{j=1}^{d} (A(j))^2}$$
Why maximizing γ a good idea?

- **Dot product**
 \[A \cdot B = \|A\| \|B\| \cos \theta \]

- **What is $w \cdot x_1$, $w \cdot x_2$?**

- **So, γ roughly corresponds to the margin**
 - **Bottom line:** Bigger γ, bigger the separation
What is the margin?

Let:
- **Line L**: $w \cdot x + b = 0$
- $w = (w^{(1)}, w^{(2)})$
- **Point A** = $(x^{(1)}_A, x^{(2)}_A)$
- **Point M** on a line = $(x^{(1)}_M, x^{(2)}_M)$

Distance from a point to a line:

$$d(A, L) = |AH| = |(A-M) \cdot w| = |(x^{(1)}_A - x^{(1)}_M) w^{(1)} + (x^{(2)}_A - x^{(2)}_M) w^{(2)}| = |x^{(1)}_A w^{(1)} + x^{(2)}_A w^{(2)} + b| = |w \cdot A + b|$$

Remember $x^{(1)}_M w^{(1)} + x^{(2)}_M w^{(2)} = -b$ since M belongs to line L.
Prediction = \text{sign}(w \cdot x + b)

"Confidence" = (w \cdot x + b) y

For i-th datapoint:
\[\gamma_i = (w \cdot x_i + b) y_i \]

Want to solve:
\[\max_{w,b} \min_{i} \gamma_i \]

Can rewrite as
\[\max_{w,\gamma} \gamma \]

\[s.t. \forall i, y_i (w \cdot x_i + b) \geq \gamma \]
Maximize the margin:

- Good according to intuition, theory (c.f. “VC dimension”) and practice

\[
\max_{w,\gamma} \gamma \\
\text{s.t.} \forall i, y_i (w \cdot x_i + b) \geq \gamma
\]

- \(\gamma\) is margin ... distance from the separating hyperplane
Support Vector Machines: Deriving the margin
Support Vector Machines

- Separating hyperplane is defined by the support vectors
 - Points on +/- planes from the solution
 - If you knew these points, you could ignore the rest
 - Generally, $d+1$ support vectors (for d dim. data)
Problem:

- Let \((w \cdot x + b)y = \gamma\) then \((2w \cdot x + 2b)y = 2\gamma\)
 - Scaling \(w\) increases margin!

Solution:

- Work with normalized \(w\):
 \[
 \gamma = \left(\frac{w}{||w||} \cdot x + b \right)y
 \]
 - Let’s also require support vectors \(x_j\) to be on the plane defined by:
 \[
 w \cdot x_j + b = \pm 1
 \]

\[
||w|| = \sqrt{\sum_{j=1}^{d} (w(j))^2}
\]
Want to maximize margin!
What is the relation between x_1 and x_2?

- $x_1 = x_2 + 2\gamma \frac{w}{||w||}$
- We also know:
 - $w \cdot x_1 + b = +1$
 - $w \cdot x_2 + b = -1$

So:

- $w \cdot x_1 + b = +1$
- $w \left(x_2 + 2\gamma \frac{w}{||w||} \right) + b = +1$
- $w \cdot x_2 + b + 2\gamma \frac{w\cdot w}{||w||} = +1$

$\Rightarrow \gamma = \frac{||w||}{w \cdot w} = \frac{1}{||w||}$

Note: $w \cdot w = ||w||^2$
Maximizing the Margin

- **We started with**
 \[\max_{w, \gamma} \gamma \]
 \[\text{s.t. } \forall i, y_i (w \cdot x_i + b) \geq \gamma \]
 But \(w \) can be arbitrarily large!

- **We normalized and...**
 \[\arg \max \gamma = \arg \max \frac{1}{\|w\|} = \arg \min \|w\| = \arg \min \frac{1}{2} \|w\|^2 \]

- **Then:**
 \[\min_w \frac{1}{2} \|w\|^2 \]
 \[\text{s.t. } \forall i, y_i (w \cdot x_i + b) \geq 1 \]

This is called SVM with "hard" constraints
Non-linearly Separable Data

- If data is **not separable** introduce **penalty**:

\[
\min_w \frac{1}{2} \|w\|^2 + C \cdot (# \text{ number of mistakes})
\]

\[s.t. \forall i, y_i(w \cdot x_i + b) \geq 1\]

- Minimize \(\|w\|^2\) plus the number of training mistakes
- Set \(C\) using cross validation

- **How to penalize mistakes?**
 - All mistakes are not equally bad!
Support Vector Machines

- **Introduce slack variables** ξ_i

$$\min_{w,b,\xi \geq 0} \frac{1}{2} \|w\|^2 + C \cdot \sum_{i=1}^{n} \xi_i$$

$s.t. \forall i, y_i (w \cdot x_i + b) \geq 1 - \xi_i$

- If point x_i is on the wrong side of the margin then get penalty ξ_i

For each data point:
If margin ≥ 1, don’t care
If margin < 1, pay linear penalty
Slack Penalty C

$$\min_w \frac{1}{2} \|w\|^2 + C \cdot (\# \text{number of mistakes})$$

$$s.t. \forall i, y_i (w \cdot x_i + b) \geq 1$$

- **What is the role of slack penalty C:**
 - **$C=\infty$:** Only want w, b that separate the data
 - **$C=0$:** Can set ξ_i to anything, then $w=0$ (basically ignores the data)
SVM in the “natural” form:

$$\arg\min_{w,b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \max\{0, 1 - y_i (w \cdot x_i + b)\}$$

- **Margin**
- **Empirical loss** L (how well we fit training data)
- **Regularization parameter** C

SVM uses “Hinge Loss”:

$$\min_{w,b} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i$$

Subject to $\forall i, y_i \cdot (w \cdot x_i + b) \geq 1 - \xi_i$

Hinge loss: $\max\{0, 1-z\}$

$z = y_i \cdot (x_i \cdot w + b)$
Support Vector Machines: How to compute the margin?
SVM: How to estimate \(w \)?

\[
\min_{w,b} \quad \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \xi_i \\
\text{s.t.} \forall i, y_i \cdot (x_i \cdot w + b) \geq 1 - \xi_i
\]

- **Want to estimate** \(w \) **and** \(b \)!
 - **Standard way**: Use a solver!
 - **Solver**: software for finding solutions to "common" optimization problems
 - **Use a quadratic solver**:
 - Minimize quadratic function
 - Subject to linear constraints
 - **Problem**: Solvers are inefficient for big data!
SVM: How to estimate \(w \)?

- **Want to minimize** \(J(w,b) \):
 \[
 J(w,b) = \frac{1}{2} \sum_{j=1}^{d} (w^{(j)})^2 + C \sum_{i=1}^{n} \max\left\{0, 1 - y_i \left(\sum_{j=1}^{d} w^{(j)} x_i^{(j)} + b \right) \right\}
 \]

- **Compute the gradient** \(\nabla(j) \) w.r.t. \(w^{(j)} \)
 \[
 \nabla J^{(j)} = \frac{\partial J(w,b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}
 \]
 \[
 \frac{\partial L(x_i, y_i)}{\partial w^{(j)}} = 0 \quad \text{if} \quad y_i (w \cdot x_i + b) \geq 1
 \]
 \[
 = -y_i x_i^{(j)} \quad \text{else}
 \]

Empirical loss \(L(x_i, y_i) \)
Gradient descent:

Iterate until convergence:
• For $j = 1 \ldots d$
 • Evaluate: $\nabla J^{(j)} = \frac{\partial f(w, b)}{\partial w^{(j)}} = w^{(j)} + C \sum_{i=1}^{n} \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}$
 • Update: $w'^{(j)} \leftarrow w^{(j)} - \eta \nabla J^{(j)}$
 • $w \leftarrow w'$

Problem:
 • Computing $\nabla J^{(j)}$ takes $O(n)$ time!
 • n ... size of the training dataset

η...learning rate parameter
C...regularization parameter
Stochastic Gradient Descent
- Instead of evaluating gradient over all examples, evaluate it for each *individual* training example.

\[
\nabla J^{(j)}(x_i) = w^{(j)} + C \cdot \frac{\partial L(x_i, y_i)}{\partial w^{(j)}}
\]

Stochastic gradient descent:

Iterate until convergence:
- For \(i = 1 \ldots n \)
 - For \(j = 1 \ldots d \)
 - Compute: \(\nabla J^{(j)}(x_i) \)
 - Update: \(w^{(j)} \leftarrow w^{(j)} - \eta \nabla J^{(j)}(x_i) \)
Other variations of GD

- **Batch Gradient Descent**
 - Calculates error for each example in the training dataset, but updates model *only after* all examples have been evaluated (i.e., end of training epoch)
 - **PROS**: fewer updates, more stable error gradient
 - **CONS**: usually requires whole dataset in memory, slower than SGD

- **Mini-Batch Gradient Descent**
 - Like BGD, but using smaller batches of training data. Balance between robustness of BGD, and efficiency of SGD.
Support Vector Machines: Example
Example: Text categorization

- **Dataset:**
 - Reuters RCV1 document corpus
 - Predict a category of a document
 - One vs. the rest classification
 - $n = 781,000$ training examples (documents)
 - 23,000 test examples
 - $d = 50,000$ features
 - One feature per word
 - Remove stop-words
 - Remove low frequency words
Questions:

(1) Is SGD successful at minimizing $J(w,b)$?
(2) How quickly does SGD find the min of $J(w,b)$?
(3) What is the error on a test set?

<table>
<thead>
<tr>
<th></th>
<th>Training time</th>
<th>Value of $J(w,b)$</th>
<th>Test error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard SVM</td>
<td>23,642 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
<tr>
<td>“Fast SVM”</td>
<td>66 secs</td>
<td>0.2278</td>
<td>6.03%</td>
</tr>
<tr>
<td>SGD-SVM</td>
<td>1.4 secs</td>
<td>0.2275</td>
<td>6.02%</td>
</tr>
</tbody>
</table>

(1) SGD-SVM is successful at minimizing the value of $J(w,b)$
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable
Optimization "Accuracy"

Training time (secs)

Optimization quality: \(| J(w,b) - J(w^{opt},b^{opt}) |\)

For optimizing \(J(w,b)\) within reasonable quality
SGD-SVM is super fast
Practical Considerations

- Need to choose learning rate \(\eta \) and \(t_0 \)

\[
 w_{t+1} \leftarrow w_t - \frac{\eta_t}{t + t_0} \left(w_t + C \frac{\partial L(x_i, y_i)}{\partial w} \right)
\]

- Tricks:
 - Choose \(t_0 \) so that the expected initial updates are comparable with the expected size of the weights
 - Choose \(\eta \):
 - Select a **small subsample**
 - Try various rates \(\eta \) (e.g., 10, 1, 0.1, 0.01, ...)
 - Pick the one that most reduces the cost
 - Use \(\eta \) for next 100k iterations on the full dataset
What about multiple classes?

- **Idea 1:**

 One against all

 Learn 3 classifiers

 - $+ \text{ vs. } \{o, -\}$

 - $- \text{ vs. } \{o, +\}$

 - $o \text{ vs. } \{+, -\}$

 Obtain:

 $w_+ b_+, w_- b_-, w_o b_o$

- **How to classify?**

- Return class c

 $\text{arg max}_c \ w_c x + b_c$
Idea 2: Learn 3 sets of weights simultaneously!

- For each class c, estimate w_c, b_c
- Want the correct class y_i to have highest margin:

$$w_{y_i} x_i + b_{y_i} \geq 1 + w_c x_i + b_c \quad \forall c \neq y_i, \forall i$$
Optimization problem:

\[
\min_{w,b} \frac{1}{2} \sum_c \|w_c\|^2 + C \sum_{i=1}^n \xi_i \quad \forall c \neq y_i, \forall i
\]

\[
w_{y_i} \cdot x_i + b_{y_i} \geq w_c \cdot x_i + b_c + 1 - \xi_i \quad \xi_i \geq 0, \forall i
\]

To obtain parameters \(w_c, b_c \) (for each class \(c \)) we can use similar techniques as for 2 class SVM

SVM is widely perceived as a very powerful learning algorithm
ML Parallelization
The Unreasonable Effectiveness of Data

- In 2017, Google revisited a 15-year-old experiment on the effect of data and model size in ML, focusing on the latest Deep Learning models in computer vision.

Findings:

- Performance increases logarithmically based on volume of training data.
- Complexity of modern ML models (i.e., deep neural nets) allows for even further performance gains.

Large datasets + large ML models => amazing results!!

Recap

- Last lecture: Decision Trees (and PLANET) as a prime example of **Data Parallelism** in ML

- Today’s lecture: Multiclass SVMs, Statistical models, Neural Networks, etc. can leverage both **Data Parallelism and Model Parallelism**
 - State-of-the-art models can have **more than 100 million parameters!**
Parallelization overview

M2 and M4 must wait for the 1st stage to complete!
Parallelization overview

- Unsupervised or Supervised Objective
- Minibatch Stochastic Gradient Descent (SGD)
- Model parameters sharded by partition
- 10s, 100s, or 1000s of cores per model

Model

Training Data

Machine (Model Partition)

Core
Parameter Server

Parameter Server \(p' = p + \Delta p \)

- **Parameter Server:** Key/Value store
- **Keys** index the model parameters (e.g., weights)
- **Values** are the parameters of the ML model (e.g., a neural network)

Systems challenges:
- Bandwidth limits
- Synchronization
- Fault tolerance
Parameter Server

Parameter Server $p' = p + \Delta p$

Why do parallel updates work?
Async SGD

- **Key idea:** don’t synchronize, just **overwrite** parameters opportunistically from multiple workers (i.e., servers)
 - Same implementation as SGD, **just without locking**!

- **In theory,** Async SGD converges, but a slower rate than the serial version.
- **In practice,** when gradient updates are sparse (i.e., high dimensional data), **same convergence**!

- Recht et al. “**HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent**”, 2011

RR is a super optimized version of online Gradient Descent
HOGWILD!

1 Initialize w in shared memory // in parallel, do
2 for $i = \{1, \ldots, p\}$ do
3 while TRUE do
4 if stopping criterion met then
5 break
6 end
7 end
8 end
9 Sample j from $1, \ldots, n$ uniformly at random.
10 Compute $f_j(w)$ and $\nabla f_j(w)$ using whatever w is currently available.
11 Let e_j denote non-zero indices of x_i
12 for $k \in e_j$ do
13 $w(k) \leftarrow w(k) - \alpha [\nabla F_j(w)](k)$
14 end
15 end

$\leq P$ is the number of partitions / processors

Component-wise gradient updates (relies on sparsity)
Asynchronous Distributed SGD

- Google, *Large Scale Distributed Deep Networks* [2012]
- All ingredients together:
 - Model and Data parallelism
 - Async SGD
- Dawn of modern Deep Learning

From an engineering standpoint, this is much better than a single model with the same number of total machines:

- Synchronization boundaries involve fewer machines
- Better robustness to individual slow machines
- Makes forward progress even during evictions/restarts