Mining Data Streams (Part 1)
New Topic: Infinite Data

High dim. data
- Locality sensitive hashing
- Clustering
- Dimensionality reduction

Graph data
- PageRank, SimRank
- Community Detection
- Spam Detection

Infinite data
- Filtering data streams
- Queries on streams
- Web advertising

Machine learning
- Decision Trees
- SVM
- Parallel SGD

Apps
- Recommender systems
- Association Rules
- Duplicate document detection
Data Streams

- In many data mining situations, we do not know the entire data set in advance.
- **Stream Management** is important when the input rate is controlled externally:
 - Google queries
 - Twitter or Facebook status updates
- We can think of the data as **infinite and non-stationary** (the distribution changes over time).
 - This is the fun part and why interesting algorithms are needed.
The Stream Model

- Input **elements** enter at a rapid rate, at one or more input ports (i.e., **streams**)
 - We call elements of the stream **tuples**
- The system cannot store the entire stream accessibly
- **Q:** How do you make critical calculations about the stream using a limited amount of (secondary) memory?
Stochastic Gradient Descent (SGD) is an example of a streaming algorithm.

In Machine Learning we call this: Online Learning.

- Allows for modeling problems where we have a continuous stream of data.
- We want an algorithm to learn from it and slowly adapt to the changes in data.

Idea: Do small updates to the model.

- SGD (SVM) makes small updates.
- So: First train the classifier on training data.
- Then: For every example from the stream, we slightly update the model (using small learning rate).
... 1, 5, 2, 7, 0, 9, 3
... a, r, v, t, y, h, b
... 0, 0, 1, 0, 1, 1, 0

Streams Entering. Each stream is composed of elements/tuples
Types of queries one wants to answer on a data stream: (we’ll do these today)

- **Sampling data from a stream**
 - Construct a random sample

- **Queries over sliding windows**
 - Number of items of type x in the last k elements of the stream
Problems on Data Streams

- Types of queries one wants to answer on a data stream: (we’ll do these on Thu)
 - Filtering a data stream
 - Select elements with property x from the stream
 - Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
 - Estimating moments
 - Estimate avg./std. dev. of last k elements
 - Finding frequent elements
Applications (1)

- **Mining query streams**
 - Google wants to know what queries are more frequent today than yesterday

- **Mining click streams**
 - Wikipedia wants to know which of its pages are getting an unusual number of hits in the past hour

- **Mining social network news feeds**
 - Look for trending topics on Twitter, Facebook
Applications (2)

- **Sensor Networks**
 - Many sensors feeding into a central controller

- **Telephone call records**
 - Data feeds into customer bills as well as settlements between telephone companies

- **IP packets monitored at a switch**
 - Gather information for optimal routing
 - Detect denial-of-service attacks
As the stream grows the sample also gets bigger
Sampling from a Data Stream

- Since we can not store the entire stream, one obvious approach is to store a sample.
- Two different problems:
 - (1) Sample a fixed proportion of elements in the stream (say 1 in 10)
 - (2) Maintain a random sample of fixed size over a potentially infinite stream
 - At any “time” k we would like a random sample of s elements of the stream 1..k
 - What is the property of the sample we want to maintain? For all time steps k, each of the k elements seen so far has equal prob. of being sampled.
Problem 1: Sampling a fixed proportion

Scenario: Search engine query stream

- Stream of tuples: (user, query, time)
- Answer questions such as: How often did a user run the same query in a single day
- Have space to store $1/10^{th}$ of query stream

Naïve solution:

- Generate a random integer in $[0...9]$ for each query
- Store the query if the integer is 0, otherwise discard
Problem with Naïve Approach

- **Simple question:** What fraction of unique queries by an average search engine user are duplicates?
 - Suppose each user issues \(x \) queries once and \(d \) queries twice (total of \(x+2d \) query instances)
 - **Correct answer:** \(d/(x+d) \)
- **Proposed solution:** We keep 10% of the queries
 - Sample will contain \(x/10 \) of the singleton queries and \(2d/10 \) of the duplicate queries at least once
 - But only \(d/100 \) pairs of duplicates
 - \(d/100 = 1/10 \cdot 1/10 \cdot d \)
 - Of \(d \) “duplicates” \(18d/100 \) appear exactly once
 - \(18d/100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot d \)
- So the sample-based answer is
 \[
 \frac{d}{100} \frac{100}{10} + \frac{d}{100} + \frac{18d}{100} = \frac{d}{10x+19d}
 \]
Solution: Sample Users

Solution:

- Pick $1/10^{th}$ of users and take all their searches in the sample

- Use a hash function that hashes the user name or user id uniformly into 10 buckets
Stream of tuples with keys:
- Key is some subset of each tuple’s components
 - e.g., tuple is (user, search, time); key is user
- Choice of key depends on application

To get a sample of a/b fraction of the stream:
- Hash each tuple’s key uniformly into b buckets
- Pick the tuple if its hash value is at most a

Hash table with b buckets, pick the tuple if its hash value is at most a.

How to generate a 30% sample?
Hash into $b=10$ buckets, take the tuple if it hashes to one of the first 3 buckets.
Sampling from a Data Stream: Sampling a fixed-size sample

As the stream grows, the sample is of fixed size
Problem 2: Fixed-size sample

Suppose we need to maintain a random sample S of size exactly s tuples

- E.g., main memory size constraint

Why? Don’t know length of stream in advance

Suppose by time n we have seen n items

- Each item is in the sample S with equal prob. s/n

How to think about the problem: say $s = 2$
Stream: $[a \times c y z k c d e g \ldots$

At $n = 5$, each of the first 5 tuples is included in the sample S with equal prob.
At $n = 7$, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen so far and out of them pick s at random
Algorithm (a.k.a. Reservoir Sampling)

- Store all the first s elements of the stream to S
- Suppose we have seen $n-1$ elements, and now the n^{th} element arrives ($n > s$)
 - With probability s/n, keep the n^{th} element, else discard it
 - If we picked the n^{th} element, then it replaces one of the s elements in the sample S, picked uniformly at random

Claim: This algorithm maintains a sample S with the desired property:
- After n elements, the sample contains each element seen so far with probability s/n
Proof: By Induction

- **We prove this by induction:**
 - Assume that after \(n \) elements, the sample contains each element seen so far with probability \(s/n \)
 - We need to show that after seeing element \(n+1 \) the sample maintains the property
 - Sample contains each element seen so far with probability \(s/(n+1) \)

- **Base case:**
 - After we see \(n=s \) elements the sample \(S \) has the desired property
 - Each out of \(n=s \) elements is in the sample with probability \(s/s = 1 \)
Proof: By Induction

- **Inductive hypothesis:** After \(n \) elements, the sample \(S \) contains each element seen so far with prob. \(s/n \)

- **Now element \(n+1 \) arrives**

- **Inductive step:** For elements already in \(S \),
 probability that the algorithm keeps it in \(S \) is:
 \[
 \left(1 - \frac{s}{n+1}\right) + \left(\frac{s}{n+1}\right)\left(\frac{s-1}{s}\right) = \frac{n}{n+1}
 \]

 - Element \(n+1 \) discarded
 - Element \(n+1 \) not discarded
 - Element in the sample not picked

- At time \(n \), tuples in \(S \) were there with prob. \(s/n \)

- Time \(n \rightarrow n+1 \), tuple stayed in \(S \) with prob. \(n/(n+1) \)

- So \(P(\text{tuple is in } S \text{ at time } n+1) = \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1} \)
Queries over a (long) Sliding Window
A useful model of stream processing is that queries are about a window of length N – the N most recent elements received

Interesting case: N is so large that the data cannot be stored in memory, or even on disk
- Or, there are so many streams that windows for all cannot be stored

Amazon example:
- For every product X we keep 0/1 stream of whether that product was sold in the n-th transaction
- We want to answer queries like:
 - How many times have we sold X in the last k sales?
Sliding Window: 1 Stream

- Sliding window on a single stream: \(N = 6 \)

```
q w e r t y u i o p a s d f g h j k l z x c v b n m
```

```
q w e r t y u i o p a s d f g h j k l z x c v b n m
```

```
q w e r t y u i o p a s d f g h j k l z x c v b n m
```

```
q w e r t y u i o p a s d f g h j k l z x c v b n m
```

Past Future
Problem:
- Given a stream of 0s and 1s
- Be prepared to answer queries of the form
 How many 1s are in the last k bits? For any $k \leq N$

Obvious solution:
- Store the most recent N bits
- When new bit comes in, discard the $N+1^{th}$ bit

Suppose $N=6$
You can not get an exact answer without storing the entire window

Real Problem:
What if we cannot afford to store N bits?
- We’re processing 1B streams and is $N=1$B as well

But we are happy with an approximate answer
An attempt: Simple solution

- **Q:** How many 1s are in the last N bits?
- A simple solution that does not really solve our problem: **Uniformity assumption**

- **Maintain 2 counters:**
 - S: number of 1s from the beginning of the stream
 - Z: number of 0s from the beginning of the stream

- How many 1s are in the last N bits? $N \cdot \frac{S}{S+Z}$

- But, what if stream is non-uniform?
 - What if distribution changes over time?

| 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 |
|---|---|
| Past | Future |
| N | S | Z |
DGIM Method

- DGIM solution that does not assume uniformity

- We store $O(\log^2 N)$ bits per stream

- Solution gives an approximate answer, never off by more than 50%
 - Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits
 - Error: If we have 10 1s then 50% error means 10 +/- 5
Solution that doesn’t (quite) work:

- Summarize *exponentially increasing* regions of the stream, looking backward
- Drop small regions if they begin at the same point as a larger region

We can reconstruct the count of the last N bits, except we are not sure how many of the last 6 1s are included in the N.
Stores only $O(\log^2 N)$ bits
- $O(\log N)$ counts of $\log_2 N$ bits each

Easy to update as more bits enter

Error in count no greater than the number of 1s in the “unknown” area
- As long as the 1s are fairly evenly distributed, the error due to the unknown region is small – no more than 50%
- But it could be that all the 1s are in the unknown area at the end
- In that case, the error is unbounded!
Fixup: DGIM method

- **Idea:** Instead of summarizing fixed-length blocks, summarize blocks with specific number of 1s:
 - Let the block *sizes* (number of 1s) increase exponentially

- **When there are few 1s in the window, block sizes stay small, so errors are small**

[Datar, Gionis, Indyk, Motwani]
Each bit in the stream has a *timestamp*, starting 1, 2, ...

Record timestamps modulo N (*the window size*), so we can represent any relevant timestamp in $O(\log_2 N)$ bits.
DGIM: Buckets

- A **bucket** in the DGIM method is a record consisting of:
 - (A) The timestamp of its end $[O(\log N) \text{ bits}]$
 - (B) The number of 1s between its beginning and end $[O(\log \log N) \text{ bits}]$

- **Constraint on buckets:**
 Number of 1s must be a power of 2
 - That explains the $O(\log \log N)$ in (B) above
Either **one** or **two** buckets with the same power-of-2 number of 1s

- Buckets do not overlap in timestamps
- Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets
- Buckets disappear when their end-time is $> N$ time units in the past
Example: Bucketized Stream

At least 1 of size 16. Partially beyond window.

Three properties of buckets that are maintained:
- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
When a new bit comes in at current time (i.e., “current bit”), drop the last (oldest) bucket if its end-time is prior to N time units before the current time

2 cases: Current bit is 0 or 1

If the current bit is 0:
no other changes are needed
If the current bit is 1:

(1) Create a new bucket of size 1, for just this bit
 - End timestamp = current time

(2) If there are now three buckets of size 1, combine the oldest two into a bucket of size 2

(3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4

(4) And so on ...
Example: Updating Buckets

Current state of the stream:

| 1001010110001011 | 1010101010101011 | 1010101101101010 | 0010110010 |

Bit of value 1 arrives

| 0010101100010111 | 1010101010101011 | 0101010101101011 | 0101010111010100 | 010110010 |

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged…

State of the buckets after merging
To estimate the number of 1s in the most recent N bits:

1. Sum the sizes of all buckets but the last
 (note “size” means the number of 1s in the bucket)

2. Add half the size of the last bucket

Remember: We do not know how many 1s of the last bucket are still within the wanted window
Example: Bucketized Stream

At least 1 of size 16. Partially beyond window.

2 of size 8

2 of size 4

1 of size 2

2 of size 1

N
Error Bound: Proof

- **Why is error at most 50%? Let’s prove it!**
- Suppose the last bucket has size 2^r
- Then by assuming 2^{r-1} (i.e., half) of its 1s are within the last bucket (but out of last-N bits), we make an error of at most 2^{r-1}
- Since there is at least one bucket of each of the sizes less than 2^r, the true sum is at least $1 + 2 + 4 + .. + 2^{r-1} = 2^r - 1$
- Thus, error at most **50%**

At least 16 1s
Further Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket, we allow either $r-1$ or r buckets ($r > 2$)
 - Except for the largest size buckets; we can have any number between 1 and r of those
- **Error is at most $O(1/r)$**
- By picking r appropriately, we can tradeoff between number of bits we store and the error
Can we use the same trick to answer queries

How many 1’s in the last k? where $k < N$?

- **A:** Find earliest bucket B that overlaps with k.
 Number of 1s is the sum of sizes of more recent buckets + $\frac{1}{2}$ size of B

Can we handle the case where the stream is not bits, but integers, and we want the sum of the last k elements?
Stream of positive integers
We want the sum of the last k elements

- Amazon: Avg. price of the last k sales

2 possible solutions:

1. If you know all integers have at most m bits
 - Treat each of the m bits of each integer as a separate stream
 - Use DGIM to count 1s for the stream for the i^{th} bit, and estimate c_i
 - The sum is $\sum_{i=0}^{m-1} c_i 2^i$

2. Use buckets to keep partial sums
 - Sum of elements in size b bucket is at most 2^b

Idea: Sum in each bucket is at most 2^b (unless bucket has only 1 integer)
Max bucket sum: 16 8 4 2 1
Sampling a fixed proportion of a stream
 - Sample size grows as the stream grows

Sampling a fixed-size sample
 - Reservoir sampling

Counting the number of 1s in the last N elements
 - Exponentially increasing windows
 - Extensions:
 - Number of 1s in any last k (k < N) elements
 - Sum of integers in the last N elements