Mining Data Streams

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
Mina Ghashami, Amazon
http://cs246.stanford.edu
New Topic: Infinite Data

High dim. data
- Locality sensitive hashing
- Clustering
- Dimensionality reduction

Graph data
- PageRank, SimRank
- Community Detection
- Spam Detection

Infinite data
- Filtering data streams
- Queries on streams
- Web advertising

Machine learning
- Decision Trees
- SVM
- Parallel SGD

Apps
- Recommender systems
- Association Rules
- Duplicate document detection
Datasets vs Data Streams

- So far we have worked with datasets where all data is available.

- In contrast, in many data mining scenarios, we do not know the entire data in advance. This is called data streams.

- Think of data streams as infinite data arriving one element at a time.
Data Streams

- **Examples:**
 - Google queries
 - Twitter posts or Facebook status updates
 - e-Commerce purchase data
 - Credit card transactions

- The input rate is controlled *externally*:
 - *Stream management* is important.
 - This is the fun part and why interesting algorithms are needed
Applications (1)

- **Mining query streams**
 - Google wants to know what queries are more frequent today than yesterday

- **Mining click streams**
 - Wikipedia wants to know which of its pages are getting an unusual number of hits in the past hour

- **Mining social network news feeds**
 - Look for trending topics on Twitter, Facebook
Applications (2)

- **Sensor Networks**
 - Many sensors feeding into a central controller

- **Telephone call records**
 - Data feeds into customer bills as well as settlements between telephone companies

- **IP packets monitored at a switch**
 - Gather information for optimal routing
 - Detect denial-of-service attacks
Streams Entering. Each stream is composed of elements/tuples.

... 1, 5, 2, 7, 0, 9, 3
... a, r, v, t, y, h, b
... 0, 0, 1, 0, 1, 1, 0

time
The Stream Model

- Input **elements** enter at a rapid rate, at one or more input ports (i.e., **streams**)
 - Elements of the stream may be tuples

- The system cannot store the entire stream

- **Q:** How do you make critical calculations about the stream using a limited amount of (secondary) memory?
Stochastic Gradient Descent (SGD) is an example of a streaming algorithm.

In Machine Learning we call this: Online Learning

- Allows for modeling problems where we have a continuous stream of data
- We want an algorithm to learn from it and slowly adapt to the changes in data

Idea: Do small updates to the model

- SGD makes small updates
- So: First train the classifier on training data
- Then: For every example from the stream, we slightly update the model (using small learning rate)
Problems on Data Streams

- Types of queries one wants to answer on a data stream:
 - Sampling data from a stream
 - Construct a random sample
 - Filtering a data stream
 - Select elements with property \(x \) from the stream
 - Counting distinct elements
 - Number of distinct elements in the last \(k \) elements of the stream
 - finding most frequent elements
Sampling from a Data Stream
Why is sampling important?
- Since we cannot store the entire stream, a representative sample can act like the stream.

Two different problems:
- (1) Sample a **fixed proportion** of elements in the stream (say 1 in 10)
- (2) Maintain a **random sample of fixed size** over a potentially infinite stream
 - At any “time” k we would like a random sample of s elements of the stream $1..k$
 - **What is the property of the sample we want to maintain?**
 - For all time steps k, each of the k elements seen so far must have **equal probability** of being sampled.
Problem 1: Sampling a fixed proportion

- E.g. sample 10% of the stream
- As stream grows, sample grows

Naïve solution:

- Generate a random integer in \([0...9]\) for each element
- Store the element if the integer is 0, otherwise discard

Any problem with this approach?

- Since elements of stream can be tuples, we have to be very careful how we sample them
Scenario: Search engine query stream

Stream of tuples: (user, query, time)

Question: What fraction of unique queries by an average user are duplicates?

Suppose each user issues x queries once and d queries twice (total of $x+2d$ query instances) then the correct answer to the query is $\frac{d}{x+d}$.

Proposed solution: We keep 10% of the queries

Let’s say at any point in time you have seen data of n users

Sample will contain $\frac{n(x+2d)}{10}$ elements of the stream

Sample will contain $\frac{nd}{100}$ pairs of duplicates

$n.d/100 = n.1/10 \cdot 1/10 \cdot d$

There are $\frac{n(10x+19d)}{100}$ unique elements in the stream

$n(x+2d)/10 - n.d/100 = n(10x+19d)/100$

So the sample-based answer is $\frac{n_\frac{d}{100}}{n_\frac{10x}{100} + n_\frac{19d}{100}} = \frac{d}{10x+19d}$.
Solution: Sample Users

- Don’t sample *queries*, sample *users* instead
- Pick $\frac{1}{10}$th of *users* and take all their search queries in the sample
- Use a hash function that hashes the user name or user id uniformly into 10 buckets
Stream of tuples with keys:
- Key is some subset of each tuple’s components
 - e.g., tuple is (user, search, time); key is user
- Choice of key depends on application

To get a sample of a/b fraction of the stream:
- Hash each tuple’s key uniformly into b buckets
- Pick the tuple if its hash value is at most a

Hash table with b buckets, pick the tuple if its hash value is at most a.
How to generate a 30% sample?
Hash into $b=10$ buckets, take the tuple if it hashes to one of the first 3 buckets
Sampling from a Data Stream: Sampling a fixed-size sample

The sample is of fixed size
Problem 2: Fixed-size sample

Suppose we need to maintain a random sample S of size exactly s tuples

- E.g., main memory size constraint

Why? Don’t know length of stream in advance

Suppose by time n we have seen n items

- Each item is in the sample S with equal prob. s/n

How to think about the problem: say $s = 2$

Stream: [a x c y z] k c d e g...

At $n = 5$, each of the first 5 tuples is included in the sample S with equal prob.

At $n = 7$, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen so far and out of them pick s at random.
Solution: Fixed Size Sample

Algorithm (a.k.a. Reservoir Sampling)

- Store all the first s elements of the stream to S
- Suppose we have seen $n-1$ elements, and now the n^{th} element arrives ($n > s$)
 - With probability s/n, keep the n^{th} element, else discard it
 - If we picked the n^{th} element, then it replaces one of the s elements in the sample S, picked uniformly at random

Claim: This algorithm maintains a sample S with the desired property:
- After n elements, the sample contains each element seen so far with probability s/n
Proof: By Induction

- **We prove this by induction:**
 - Assume that after \(n \) elements, the sample contains each element seen so far with probability \(\frac{s}{n} \)
 - We need to show that after seeing element \(n+1 \) the sample maintains the property
 - Sample contains each element seen so far with probability \(\frac{s}{n+1} \)

- **Base case:**
 - After we see \(n=s \) elements the sample \(S \) has the desired property
 - Each out of \(n=s \) elements is in the sample with probability \(\frac{s}{s} = 1 \)
Proof: By Induction

- **Inductive hypothesis:** After \(n \) elements, the sample \(S \) contains each element seen so far with prob. \(\frac{s}{n} \)

- **Inductive step:**
 - New element \(n+1 \) arrives, it goes to \(S \) with prob \(\frac{s}{n+1} \)
 - For all other elements currently in \(S \):
 - They were in \(S \) with prob. \(\frac{s}{n} \)
 - The probability that they remain in \(S \):
 \[
 \left(1 - \frac{s}{n+1} \right) + \left(\frac{s}{n+1} \right) \left(\frac{s-1}{s} \right) = \frac{n}{n+1}
 \]
 - Element \(n+1 \) discarded
 - Element \(n+1 \) not discarded
 - Element in the sample not picked
 - tuples stayed in \(S \) with prob. \(\frac{n}{n+1} \)

So
\[
P(\text{tuple is in } S \text{ at time } n+1) = \frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1}
\]
Filtering Data Streams
Each element of data stream is a tuple
A filter S that is a list of keys
Determine which tuples of stream have key in S

Obvious solution: Hash table
But suppose we do not have enough memory to store all of S in a hash table
E.g., we might be processing millions of filters at the same time on the stream
Applications

- **Example: Email spam filtering**
 - 1 million users, each user has 1000 “good” email addresses (trusted addresses)
 - If an email comes from one of these, it is **NOT** spam

- **Publish-subscribe systems**
 - You are collecting lots of messages (news articles)
 - People express interest in certain sets of keywords
 - Determine whether each message matches a user’s interest

- **Content filtering**
 - You want to make sure the user does not see the same ad/recommendation multiple times
Bloom Filter algorithm:
Given a set of keys S that we want to filter
- Create a **bit array** B of n bits, initially all 0s
- Choose a **hash function** h with range $[0,n)$
- Hash each member of $s \in S$ to one of n buckets, and set that bit to 1, i.e., $B[h(s)]=1$
- Hash each element a of the stream and output only those that hash to bit that was set to 1
 - Output a if $B[h(a)] == 1$
Filter

Item hashes to a bucket that at least one of the items in S hashed to.

Output the item since it may be in S. It hashes to a bucket set to 0 so it is surely not in S.

- Creates false positives
 - Items that are hashed to a 1 bucket may or may not be in S
- but no false negatives
 - Items that are hashed to 0 bucket are surely not in S
First Cut Solution (3)

- $|S| = 1$ billion email addresses

Naive Dictionary approach: 1 billion email address, every email address is ~20 characters long \rightarrow 160 GB to store email addresses + overhead of dictionary \rightarrow 200 GB!

Bloom Filter: $|B| = 1$GB = 8 billion bits

- If the email address is in S, then it surely hashes to a bucket that has the bit set to 1, so it always gets through (*no false negatives*)

- Approximately $1/8$ of the bits are set to 1, so about $1/8^{th}$ of the addresses not in S get through to the output (*false positives*)
 - Actually, less than $1/8^{th}$, because more than one address might hash to the same bit
Let’s do a more accurate analysis of number of false positives, we know that:

- Fraction of 1s in array B = prob. of false positive

Darts & Targets: If we throw m darts into n equally likely targets, what is the probability that a target gets at least one dart?

In our case:

- Targets = bits/buckets
- Darts = hash values of items
We have m darts, n targets

What is the probability that a target gets at least one dart?

$1 - (1 - 1/n)$

$1/e$ as $n \to \infty$

$1 - e^{-m/n}$

Probability some target X not hit by a dart

Probability at least one dart hits target X

Approximation is especially accurate when n is large
Analysis: Throwing Darts (3)

- Fraction of 1s in the array $B = \frac{1}{n} \cdot \sum_{i=1}^{n} B_i = 1 - e^{-m/n}$

- Example: 10^9 darts, $8 \cdot 10^9$ targets
 - Fraction of 1s in $B = 1 - e^{-1/8} = 0.1175$
 - Compare with our earlier estimate: $1/8 = 0.125$

- To reduce false positive rate of bloom filter we use multiple hash functions
Consider: $|S| = m$ keys, $|B| = n$ bits

Use k independent hash functions $h_1, ..., h_k$

Initialization:

- Set B to all 0s
- Hash each element $s \in S$ using each hash function h_i, set $B[h_i(s)] = 1$ (for each $i = 1, ..., k$)

Run-time:

- When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all $i = 1, ..., k$ then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function $h_i(x)$
 - Otherwise discard the element x
What fraction of the bit vector B are 1s?

- Throwing $k \cdot m$ darts at n targets
- So fraction of 1s is $(1 - e^{-km/n})$

But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1

So, false positive probability $= (1 - e^{-km/n})^k$
Bloom Filter – Analysis (2)

- $m = 1$ billion, $n = 8$ billion
 - $k = 1$: $(1 - e^{-1/8}) = 0.1175$
 - $k = 2$: $(1 - e^{-1/4})^2 = 0.0489$

- What happens as we keep increasing k?

- Optimal value of k: $\frac{n}{m} \ln 2$
 - In our case: Optimal $k = 8 \ln(2) = 5.54 \approx 6$
 - Error at $k = 6$: $(1 - e^{-3/4})^6 = 0.0216$

Optimal k: k which gives the lowest false positive probability
Bloom filters guarantee no false negatives, and use limited memory

- Great for pre-processing before more expensive checks

Suitable for hardware implementation

- Hash function computations can be parallelized

Is it better to have 1 big B or k small Bs?

- **It is the same:** \((1 - e^{-km/n})^k\) vs. \((1 - e^{-m/(n/k)})^k\)

- But keeping 1 big B is simpler
Counting Distinct Elements
Counting Distinct Elements

- **Problem:**
 - Data stream consists of elements chosen from a universal set of size N
 - Maintain a count of the number of distinct elements seen so far

- **Obvious approach:**
 Maintain a dictionary of elements seen so far
 - keep a hash table of all the distinct elements seen so far
 - What if number of distinct elements are huge?
 - What if there are many streams that need to be processed at once?
Applications

- How many unique users a website has seen in each given month?
 - Universal set = set of logins for that month
 - Stream element = each time someone logs in

- How many different words are found at a site which is among the Web pages being crawled?
 - Unusually low or high numbers could indicate artificial pages (spam?)

- How many distinct products have we sold in the last week?
Real problem: What if we do not have space to maintain the set of elements seen so far in every stream?

- We have limited working storage

- We use a variety of hashing and randomization to get approximately what we want

- Estimate the count in an unbiased way

- Accept that the count may have a little error, but limit the probability that the error is large
Estimates number of distinct elements by hashing elements to a bit-string that is sufficiently long

- The length of the bit-string is large enough that it produces more result than size of universal set.

Idea: hash elements to a binary string

- the more different elements we see in the stream, the more different hash values we shall have.
- Number of trailing 0s in these hash values estimates number of distinct elements.
Pick a hash function h that maps each of the N elements to at least $\log_2 N$ bits

- So hash values are binary strings
 - E.g. for a stream element a, $h(a) = 1100$

Let $r(a)$ be the number of trailing 0s in $h(a)$

- $r(a) = \text{position of first 1 counting from the right}$
 - E.g., for $h(a) = 1100$, the $r(a) = 2$

Record $R = \text{the maximum } r(a) \text{ seen}$

- $R = \max_a r(a)$, over all the items a seen so far

Estimated number of distinct elements $= 2^R$
Why It Works: Intuition

- **Very rough and heuristic intuition why Flajolet-Martin works:**
 - \(h(a) \) hashes \(a \) with equal prob. to any of \(N \) values
 - All elements have equal prob. to have a tail of \(r \) zeros
 - The prob. of a given \(h(a) \) to have a tail of \(r \) zeros is:
 \[
 \Pr(\text{a tail of } r \text{ zeros }) = 2^{-r}
 \]
 - About 50% of \(a \)s hash to ***0
 - About 25% of \(a \)s hash to **00
Let m be the number of distinct elements seen so far

Then the probability that we have at least one tail of r zeros is

$$1 - (1 - 2^{-r})^m$$

Prob. no element has tail of r zeros.

Prob. that a given $h(a)$ does not have a tail of r zeros.
Therefore $\text{pr(finding at least one tail of } r \text{ zeros)} =$

$1 - (1 - 2^{-r})^m = 1 - (1 - 2^{-r})^{2^r(m2^{-r})} \approx 1 - e^{-m2^{-r}}$

- If $m << 2^r$, then prob. tends to 1
 - $1 - e^{-m2^{-r}} \approx 0 \quad \text{as } m/2^r \rightarrow 0$
 - So, the probability of finding a tail of length r tends to 0
- If $m >> 2^r$, then prob. tends to 0
 - $1 - e^{-m2^{-r}} \approx 1 \quad \text{as } m/2^r \rightarrow \infty$
 - So, the probability of finding a tail of length r tends to 1

Thus, 2^R will almost always be around $m!$
Why It Doesn’t Work

- E[2^R] is actually infinite
 - Probability halves when R → R+1, but value doubles
- Workaround involves using many hash functions h_i and getting many samples of R_i
- How are samples R_i combined?
 - Average? What if one very large value 2^{R_i}?
 - Median? All estimates are a power of 2
- Solution:
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians
Counting Most-Common Recent Items
Two flavor of a problem:
1. Finding the most common elements
2. Finding the most common “recent” elements

Example:
- In a stream of movie tickets from all over the world, what are most popular movies “currently”?
- In a stream of items sold at Amazon, what are most popular items “recently”?
- In a stream of tweets, who are the most active users “currently”?
What is “recent”?

One approach:

- Get a sliding window of size N
- Estimate the count in the window

Sharp distinction between “recent” and “distant past”!
Solution: Exponentially decaying windows

Two type of windows:

1. Sliding window of fixed length
 - Holds last N elements

2. Decaying window
 - Takes all elements of the stream
 - Weights the recent elements more heavily
Exponentially Decaying Window

- Computes a smooth aggregation over stream
- If stream is $a_1, a_2,..., a_t$ then the exponentially decaying window at time t is

$$\sum_{i=0}^{t-1} a_{t-i}(1 - c)^i$$

$$= a_t + a_{t-1}(1 - c) + a_{t-2}(1 - c)^2 + \cdots$$

- c is a constant, presumably tiny, like 10^{-6} or 10^{-9}
- a_t is a non-negative integer in general

- When new a_{t+1} arrives:
 Multiply current sum by $(1-c)$ and add a_{t+1}
Counting Items

- Given a stream of items, form a binary stream per item:
 - 1 = item present; 0 = not present

Stream of items:

brtbhbgbgbgzbabbbcbdbdbhnbrbpbqbbstbabaebcbbtbvbwxbwbbcbdbcgfbabbbzdb

Binary stream for item “b”

10010101100010110101010101010101011010101010101110101010111010100010110010
On all binary streams, compute exponentially decaying window

- If each \(a_t \) is an “item” we can compute the characteristic function of each item \(x \) as an Exponentially Decaying Window:
 - That is: \(\sum_{t=1}^{T} \delta_t \cdot (1 - c)^{T-t} \)
 - where \(\delta_t = 1 \) if \(a_t = x \), and 0 otherwise

- In other words: Imagine that for each item \(x \) we have a binary stream (1 if \(x \) appears, 0 if \(x \) does not appear)
- Then, when a new item \(a_t \) arrives:
 - Multiply the summation by \((1 - c) \)
 - Add +1 to the summation if item = \(x \)

- Call this sum the “weight” of item \(x \)
Spreads out weights of the stream as far back as the stream goes

Important property: Sum over all weights

\[
\sum_t 1 \cdot (1 - c)^t = \frac{1}{[1 - (1 - c)]} = \frac{1}{c}
\]

\[
\sum_{k=0}^{n} z^k = \frac{1 - z^{n+1}}{1 - z}
\]
What are “currently” most popular movies?

Suppose we want to find movies of weight > \(\frac{1}{2} \)

Important property: Sum over all weights

\[
\sum_t \delta_t \cdot (1 - c)^t = \frac{1}{1 - (1 - c)} = \frac{1}{c}
\]

- That means that no item can have weight greater than \(\frac{1}{c} \)
- The item will have weight \(\frac{1}{c} \) if its stream is \([1,1,1,1,1...]\). Note we have a separate binary stream for each item. So, at a given time only one item will have a \(\delta_t = 1 \), and other items will get a 0.

Thus:

- There cannot be more than \(\frac{2}{c} \) movies with weight of \(\frac{1}{2} \) or more
 - Why? Assume weight of item is \(\frac{1}{2} \). How many items \(n \) can we have so that the sum is <\(\frac{1}{c} \); **Answer:** \(\frac{1}{2}n < \frac{1}{c} \rightarrow n < \frac{2}{c} \)
- So, \(\frac{2}{c} \) is a limit on the number of movies being counted at any time
Algorithm for finding items of weight $> \frac{1}{2}$:

1. Keep $\frac{2}{c}$ counters and initialize them to 0.
2. When an item a_t arrives in the stream:
 - Multiply all counts by $(1-c)$
 - Drop all counters whose count < $1/2$
 - If the new item is among the counters, increment its count by 1
 - Otherwise, if there is an empty counter assign it to a_t and set it to 1
3. At any point in the stream, the most common recent items are the ones in the counter set.
Extension to Itemsets

- Extension: Count (some) itemsets
 - What are currently “hot” itemsets?
 - Problem: Too many itemsets to keep counts of all of them in memory

- When a basket B comes in:
 - Multiply all counts by $(1 - c)$
 - For uncounted items in B, create new count
 - Add 1 to count of any item in B and to any itemset contained in B that is already being counted
 - Drop counts $< \frac{1}{2}$
 - Initiate new counts (next slide)
Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket B.

Intuitively: If all subsets of S are being counted, this means they are “frequent/hot” and thus S has a potential to be “hot”

Example:
- Start counting $S=\{i, j\}$ iff both i and j were counted prior to seeing B
- Start counting $S=\{i, j, k\}$ iff $\{i, j\}$, $\{i, k\}$, and $\{j, k\}$ were all counted prior to seeing B
counts for single items $< (2/c) \cdot (\text{avg. number of items in a basket})$

Counts for larger itemsets = ??

But we are conservative about starting counts of large sets

If we counted every set we saw, one basket of 20 items would initiate 1M counts
Summary

- Sampling a fixed proportion of a stream
 - Sample size grows as the stream grows
- Sampling a fixed-size sample
 - Reservoir sampling
- Check existence of a set of keys in the stream
 - Bloom filter
- Counting distinct elements in a stream
 - Flajolet-Martin algorithm
- Counting frequent elements in a stream
 - Exponentially decaying window