More algorithms for streams:

1. Filtering a data stream: **Bloom filters**
 - Select elements with property x from stream

2. Counting distinct elements: **Flajolet-Martin**
 - Number of distinct elements in the last k elements of the stream

3. Estimating moments: **AMS method**
 - Estimate std. dev. of last k elements

4. Counting frequent items
(1) Filtering Data Streams
Each element of data stream is a tuple
Given a list of keys S
Determine which tuples of stream have key in S

Obvious solution: Hash table
- But suppose we **do not have enough memory** to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream
Applications

- **Example: Email spam filtering**
 - We know 1 billion “good” email addresses
 - Or, each user has a list of trusted addresses
 - If an email comes from one of these, it is NOT spam

- **Publish-subscribe systems**
 - You are collecting lots of messages (news articles)
 - People express interest in certain sets of keywords
 - Determine whether each message matches user’s interest

- **Content filtering**
 - You want to make sure the user does not see the same ad/recommendation multiple times
Given a set of keys S that we want to filter

- Create a **bit array** B of n bits, initially all 0s
- Choose a **hash function** h with range $[0,n)$
- Hash each member of $s \in S$ to one of n buckets, and set that bit to 1, i.e., $B[h(s)]=1$
- Hash each element a of the stream and output only those that hash to bit that was set to 1
 - Output a if $B[h(a)] == 1$
First Cut Solution (2)

- Creates false positives but no false negatives
 - If the item is in S we surely output it, if not we may still output it

Output the item since it may be in S. Item hashes to a bucket that at least one of the items in S hashed to.

Drop the item.
It hashes to a bucket set to 0 so it is surely not in S.
First Cut Solution (3)

- \(|S| = 1\) billion email addresses
- \(|B| = 1\)GB = \(8\) billion bits

- If the email address is in \(S\), then it surely hashes to a bucket that has the bit set to \(1\), so it always gets through (no false negatives)

- Approximately \(1/8\) of the bits are set to \(1\), so about \(1/8\)th of the addresses not in \(S\) get through to the output (false positives)
 - Actually, less than \(1/8\)th, because more than one address might hash to the same bit
More accurate analysis for the number of false positives

Consider: If we throw m darts into n equally likely targets, what is the probability that a target gets at least one dart?

In our case:
- **Targets** = bits/buckets
- **Darts** = hash values of items
- We have \(m \) darts, \(n \) targets
- What is the probability that a target gets at least one dart?

\[
1 - \left(1 - \frac{1}{n}\right)^n \quad \text{Equivalent to} \quad 1 - e^{-m/n}
\]

- Probability some target \(X \) not hit by a dart
- Probability at least one dart hits target \(X \)

Approximation is especially accurate when \(n \) is large
Fraction of 1s in the array $B = probability\ of\ false\ positive = 1 - e^{-m/n}$

Example: 10^9 darts, $8 \cdot 10^9$ targets

- Fraction of 1s in $B = 1 - e^{-1/8} = 0.1175$
- Compare with our earlier estimate: $1/8 = 0.125$
Bloom Filter

- Consider: $|S| = m$, $|B| = n$
- Use k independent hash functions h_1, \ldots, h_k
- Initialization:
 - Set B to all 0s
 - Hash each element $s \in S$ using each hash function h_i, set $B[h_i(s)] = 1$ (for each $i = 1, \ldots, k$)
- Run-time:
 - When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all $i = 1, \ldots, k$ then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function $h_i(x)$
 - Otherwise discard the element x
What fraction of the bit vector B are 1s?

- Throwing $k \cdot m$ darts at n targets
- So fraction of 1s is $(1 - e^{-km/n})$

But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1

So, false positive probability $= (1 - e^{-km/n})^k$
- $m = 1$ billion, $n = 8$ billion
 - $k = 1$: $(1 - e^{-1/8}) = 0.1175$
 - $k = 2$: $(1 - e^{-1/4})^2 = 0.0489$

- What happens as we keep increasing k?

- Optimal value of k: $n/m \ln(2)$
 - In our case: Optimal $k = 8 \ln(2) = 5.54 \approx 6$
 - Error at $k = 6$: $(1 - e^{-3/4})^6 = 0.0216$

Optimal k: k which gives the lowest false positive probability
Bloom filters guarantee no false negatives, and use limited memory

- Great for pre-processing before more expensive checks

Suitable for hardware implementation

- Hash function computations can be parallelized

Is it better to have 1 big B or k small Bs?

- It is the same: $(1 - e^{-km/n})^k$ vs. $(1 - e^{-m/(n/k)})^k$
- But keeping 1 big B is simpler
(2) Counting Distinct Elements
Problem:
- Data stream consists of a universe of elements chosen from a set of size N
- Maintain a count of the number of distinct elements seen so far

Obvious approach:
Maintain the set of elements seen so far
- That is, keep a hash table of all the distinct elements seen so far
Applications

- How many different words are found at a site which is among the Web pages being crawled?
 - Unusually low or high numbers could indicate artificial pages (spam?)

- How many different Web pages does each customer request in a week?

- How many distinct products have we sold in the last week?
Real problem: What if we do not have space to maintain the set of elements seen so far?

Estimate the count in an unbiased way

Accept that the count may have a little error, but limit the probability that the error is large
Pick a hash function h that maps each of the N elements to at least $\log_2 N$ bits.

For each stream element a, let $r(a)$ be the number of trailing 0s in $h(a)$
- $r(a) =$ position of first 1 counting from the right
 - E.g., say $h(a) = 12$, then 12 is 1100 in binary, so $r(a) = 2$
- Record $R =$ the maximum $r(a)$ seen
 - $R = \max_a r(a)$, over all the items a seen so far

Estimated number of distinct elements $= 2^R$
Very rough and heuristic intuition why Flajolet-Martin works:

- \(h(a) \) hashes \(a \) with equal prob. to any of \(N \) values
- Then \(h(a) \) is a sequence of \(\log_2 N \) bits, where \(2^{-r} \) fraction of all \(a \)s have a tail of \(r \) zeros
 - About 50% of \(a \)s hash to \(***0 \)
 - About 25% of \(a \)s hash to \(**00 \)
 - So, if we saw the longest tail of \(r=2 \) (i.e., item hash ending \(*100 \)) then we have probably seen about 4 distinct items so far

- So, it takes to hash about \(2^r \) items before we see one with zero-suffix of length \(r \)
Now we show why Flajolet-Martin works

Formally, we will show that probability of finding a tail of r zeros:

- Goes to 1 if $m \gg 2^r$
- Goes to 0 if $m \ll 2^r$

where m is the number of distinct elements seen so far in the stream

Thus, 2^R will almost always be around $m!$
What is the probability that a given $h(a)$ ends in at least r zeros? It is 2^{-r}

- $h(a)$ hashes elements uniformly at random
- Probability that a random number ends in at least r zeros is 2^{-r}

Then, the probability of NOT seeing a tail of length r among m elements:

$$\left(1 - 2^{-r}\right)^m$$

Prob. all end in fewer than r zeros.
Prob. that given $h(a)$ ends in fewer than r zeros.
Note: \((1 - 2^{-r})^m = (1 - 2^{-r})^{2r(m2^{-r})} \approx e^{-m2^{-r}}\)

Prob. of NOT finding a tail of length \(r\) is:

- If \(m \ll 2^r\), then prob. tends to 1
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 1 \quad \text{as } m/2^r \to 0\)
 - So, the probability of finding a tail of length \(r\) tends to 0

- If \(m \gg 2^r\), then prob. tends to 0
 - \((1 - 2^{-r})^m \approx e^{-m2^{-r}} = 0 \quad \text{as } m/2^r \to \infty\)
 - So, the probability of finding a tail of length \(r\) tends to 1

Thus, \(2^R\) will almost always be around \(m!\)
Why It Doesn’t Work

- \(E[2^R] \) is actually infinite
 - Probability halves when \(R \rightarrow R+1 \), but value doubles
- Workaround involves using many hash functions \(h_i \) and getting many samples of \(R_i \)
- How are samples \(R_i \) combined?
 - Average? What if one very large value \(2^{R_i} \)?
 - Median? All estimates are a power of 2
- Solution:
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians
(3) Counting Itemsets
New Problem: Given a stream, which items appear more than s times in the window?

Possible solution: Think of the stream of baskets as one binary stream per item

- $1 = \text{item present}; \ 0 = \text{not present}$
- Use DGIM to estimate counts of 1s for all items

At least 1 of size 16. Partially beyond window.
Extension to Itemsets

- In principle, you could count frequent pairs or even larger sets the same way
 - One stream per itemset

- Drawbacks:
 - Only approximate
 - Number of different itemsets is way too big to have a separate stream of each itemset
Exponentially decaying windows: A heuristic for selecting likely frequent items (itemsets)

- What are “currently” most popular movies?
 - Instead of computing the raw count in last N elements
 - Compute a smooth aggregation over the whole stream

- If stream is $a_1, a_2, ...$ and we are taking the sum of the stream, take the answer at time t to be:

$$\sigma_t = \sum_{t=1}^{T} a_t (1 - c)^{T-t}$$

 - c is a constant, presumably tiny, like 10^{-6} or 10^{-9}
 - a_t is a non-negative integer in general

- When new a_{t+1} arrives:
 Multiply current sum by $(1-c)$ and add a_{t+1}
If each a_t is an “item” we can compute the characteristic function of each item x as an Exponentially Decaying Window:

- That is: $\sum_{t=1}^{T} \delta_t \cdot (1 - c)^{T-t}$
 - where $\delta_t = 1$ if $a_t = x$, and 0 otherwise

- In other words: Imagine that for each item x we have a binary stream (1 if x appears, 0 if x does not appear)

- Then, when a new item x arrives:
 - Multiply counts of all items by $(1 - c)$
 - Add +1 to count for item x

- Call this sum the “weight” of item x
Important property: Sum over all weights

\[\sum_t 1 \cdot (1 - c)^t \text{ is } \frac{1}{1 - (1 - c)} = \frac{1}{c}\]
What are “currently” most popular movies?

Suppose we want to find movies of weight > ½

Important property: Sum over all weights
\[\sum_t \delta_t \cdot (1 - c)^t \] is \(1/[1 - (1 - c)] = 1/c \)

That means that no item can have weight greater than 1/c

The item will have weight 1/c if its stream is [1,1,1,1,1...]. Note we have a separate binary stream for each item. So, at a given time only one item will have a \(\delta_t = 1 \), and other items will get a 0.

Thus:

There cannot be more than \(2/c \) movies with weight of ½ or more

Why? Assume wgt. of item is ½. How many items \(n \) can we have so that the sum is <1/c; Answer: \(\frac{1}{2}n < 1/c \rightarrow n < 2/c \)

So, \(2/c \) is a limit on the number of movies being counted at any time
Extension: Count (some) itemsets

- What are currently “hot” itemsets?
 - **Problem:** Too many itemsets to keep counts of all of them in memory

When a basket \(B \) comes in:

- Multiply all counts by \((1 - c) \)
- For uncounted items in \(B \), create new count
- Add 1 to count of any item in \(B \) and to any itemset contained in \(B \) that is already being counted
- Drop counts < \(\frac{1}{2} \)
- Initiate new counts (next slide)
Start a count for an itemset $S \subseteq B$ if every proper subset of S had a count prior to arrival of basket B.

- **Intuitively**: If all subsets of S are being counted, this means they are "frequent/hot" and thus S has a potential to be "hot"

- **Example**:
 - Start counting $S=\{i, j\}$ iff both i and j were counted prior to seeing B
 - Start counting $S=\{i, j, k\}$ iff $\{i, j\}$, $\{i, k\}$, and $\{j, k\}$ were all counted prior to seeing B
Counts for single items $< (2/c) \cdot (\text{avg. number of items in a basket})$

Counts for larger itemsets = ??

But we are conservative about starting counts of large sets

- If we counted every set we saw, one basket of 20 items would initiate 1M counts
(4) Computing Moments
Suppose a stream has elements chosen from a set A of N values

Let m_i be the number of times value i occurs in the stream

The k^{th} moment is

$$\sum_{i \in A} (m_i)^k$$

This is the same way as moments are defined in statistics. But there we often “center” the moment by subtracting the mean.
Special Cases

\[\sum_{i \in A} (m_i)^k \]

- **0th moment** = number of distinct elements
 - The problem just considered
- **1st moment** = Total number of elements = length of the stream
 - Easy to compute
- **2nd moment** = *surprise number* \(S \) = a measure of how uneven the distribution is
Third Moment is Skew:

![Negative Skew vs Positive Skew](image)

- Peaks
- Tails
- Shoulders

Fourth moment: Kurtosis

- Peakedness (width of peak), tail weight, and lack of shoulders (distribution primarily peak and tails, not in between).
Example: Surprise Number

- Stream of length 100
- 11 distinct values

- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9
 Surprise $S = 910$

- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1
 Surprise $S = 8,110$
AMS Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2^{nd} moment S
- We pick and keep track of many variables X:
 - For each variable X we store $X.el$ and $X.val$
 - $X.el$ corresponds to the item i
 - $X.val$ corresponds to the count m_i of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_i m_i^2$
One Random Variable (X)

- **How to set X.val and X.el?**
 - Assume stream has length \(n \) (we relax this later)
 - Pick some random time \(t (t<n) \) to start, so that any time is equally likely
 - Let the stream have item \(i \) at time \(t \). *We set X.el = i*
 - Then we maintain count \(c (X.val = c) \) of the number of \(is \) in the stream starting from the chosen time \(t \)
 - **Then the estimate of the 2\(^{nd}\) moment (\(\sum_i m_i^2 \)) is:**
 \[
 S = f(X) = n (2 \cdot c - 1)
 \]
 - Note, we will keep track of multiple \(Xs, (X_1, X_2, \ldots X_k) \) and our final estimate will be \(S = 1/k \sum_j^k f(X_j) \)
Expectation Analysis

- **2nd moment is** \(S = \sum_i m_i^2 \)
- \(c_t \) ... number of times item at time \(t \) appears from time \(t \) onwards \((c_1 = m_a, c_2 = m_a - 1, c_3 = m_b) \)
- \[E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t - 1) \]
 \[= \frac{1}{n} \sum_i n \left(1 + 3 + 5 + \ldots + 2m_i - 1 \right) \]

Group times by the value seen

Time \(t \) when the last \(i \) is seen \((c_t = 1) \)

Time \(t \) when the penultimate \(i \) is seen \((c_t = 2) \)

Time \(t \) when the first \(i \) is seen \((c_t = m_i) \)
Expectation Analysis

Stream:

<table>
<thead>
<tr>
<th>Count:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(m_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream:</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

- \(E[f(X)] = \frac{1}{n} \sum_i n (1 + 3 + 5 + \cdots + 2m_i - 1)\)
 - Little side calculation: \((1 + 3 + 5 + \cdots + 2m_i - 1) = \sum_{i=1}^{m_i} (2i - 1) = 2 \frac{m_i(m_i+1)}{2} - m_i = (m_i)^2\)
- Then \(E[f(X)] = \frac{1}{n} \sum_i n (m_i)^2\)
- **So,** \(E[f(X)] = \sum_i (m_i)^2 = S\)
- **We have the second moment (in expectation)**!
For estimating k^{th} moment we essentially use the same algorithm but change the estimate:

- For $k=2$ we used $n \cdot (2 \cdot c - 1)$
- For $k=3$ we use: $n \cdot (3 \cdot c^2 - 3c + 1)$ (where $c=X.val$)

Why?

- **For $k=2$:** Remember we had $(1 + 3 + 5 + \cdots + 2m_i - 1)$ and we showed terms $2c-1$ (for $c=1,\ldots,m$) sum to m^2
 - Note: $2c - 1 = c^2 - (c - 1)^2$
 - $\sum_{c=1}^{m} (2c - 1) = \sum_{c=1}^{m} c^2 - \sum_{c=1}^{m} (c - 1)^2 = m^2$
- **For $k=3$:** $c^3 - (c-1)^3 = 3c^2 - 3c + 1$

Generally: Estimate $= n \cdot (c^k - (c - 1)^k)$
In practice:

- Compute $f(X) = n(2c - 1)$ for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages

Problem: Streams never end

- We assumed there was a number n, the number of positions in the stream
- But real streams go on forever, so n is a variable – the number of inputs seen so far
(1) The variables X have n as a factor – keep n separately; just hold the count in X

(2) Suppose we can only store k counts. We must throw some Xs out as time goes on:

- **Objective:** Each starting time t is selected with probability k/n
- **Solution:** (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the n^{th} element arrives ($n > k$), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability