Mining Data Streams (Part 2)
More algorithms for streams:

1. Filtering a data stream: **Bloom filters**
 - Select elements with property \(x \) from stream

2. Counting distinct elements: **Flajolet-Martin**
 - Number of distinct elements in the last \(k \) elements of the stream

3. Estimating moments: **AMS method**
 - Estimate std. dev. of last \(k \) elements

4. Counting frequent items
(1) Filtering Data Streams
Each element of data stream is a tuple

Given a list of keys S

Determine which tuples of stream have key in S

Obvious solution: Hash table

- But suppose we do not have enough memory to store all of S in a hash table
 - E.g., we might be processing millions of filters on the same stream
Applications

- **Example: Email spam filtering**
 - We know 1 billion “good” email addresses
 - Or, each user has a list of trusted addresses
 - If an email comes from one of these, it is **NOT** spam

- **Publish-subscribe systems**
 - You are collecting lots of messages (news articles)
 - People express interest in certain sets of keywords
 - Determine whether each message matches user’s interest

- **Content filtering:**
 - You want to make sure the user does not see the same ad multiple times
First Cut Solution (1)

Given a set of keys S that we want to filter

- Create a **bit array** B of n bits, initially all **0s**
- Choose a **hash function** h with range $[0, n)$
- Hash each member of $s \in S$ to one of n buckets, and set that bit to 1, i.e., $B[h(s)]=1$
- Hash each element a of the stream and output only those that hash to bit that was set to **1**
 - **Output** a if $B[h(a)] == 1$
First Cut Solution (2)

- Creates false positives but no false negatives
 - If the item is in S we surely output it, if not we may still output it

Output the item since it may be in S. Item hashes to a bucket that at least one of the items in S hashed to.

Drop the item.
It hashes to a bucket set to 0 so it is surely not in S.

Filter

Item

Hash func h

0010001011000

Bit array B
First Cut Solution (3)

- $|S| = 1 \text{ billion email addresses}$
 - $|B| = 1 \text{GB} = 8 \text{ billion bits}$

- If the email address is in S, then it surely hashes to a bucket that has the bit set to 1, so it always gets through (no false negatives)

- Approximately $1/8$ of the bits are set to 1, so about $1/8^{th}$ of the addresses not in S get through to the output (false positives)
 - Actually, less than $1/8^{th}$, because more than one address might hash to the same bit
More accurate analysis for the number of false positives

Consider: If we throw \(m \) darts into \(n \) equally likely targets, what is the probability that a target gets at least one dart?

In our case:
- **Targets** = bits/buckets
- **Darts** = hash values of items
We have m darts, n targets.

What is the probability that a target gets at least one dart?

$$1 - (1 - 1/n)^n$$

Equals $1/e$ as $n \to \infty$

Equivalent

$$1 - e^{-m/n}$$

Probability some target X not hit by a dart

Probability at least one dart hits target X

Approximation is especially accurate when n is large
Analysis: Throwing Darts (3)

- **Fraction of 1s in the array B** = probability of false positive = \(1 - e^{-m/n}\)

- **Example:** \(10^9\) darts, \(8 \cdot 10^9\) targets
 - Fraction of 1s in B = \(1 - e^{-1/8} = 0.1175\)
 - Compare with our earlier estimate: \(1/8 = 0.125\)
Consider: $|S| = m$, $|B| = n$

Use k independent hash functions h_1, \ldots, h_k

Initialization:
- Set B to all 0s
- Hash each element $s \in S$ using each hash function h_i, set $B[h_i(s)] = 1$ (for each $i = 1, \ldots, k$)
 (note: we have a single array B!)

Run-time:
- When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all $i = 1, \ldots, k$ then declare that x is in S
 - That is, x hashes to a bucket set to 1 for every hash function $h_i(x)$
 - Otherwise discard the element x
What fraction of the bit vector B are 1s?

- Throwing $k \cdot m$ darts at n targets
- So fraction of 1s is $(1 - e^{-km/n})$

But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1

So, false positive probability $= (1 - e^{-km/n})^k$
$m = 1$ billion, $n = 8$ billion

- $k = 1$: $(1 - e^{-1/8}) = 0.1175$
- $k = 2$: $(1 - e^{-1/4})^2 = 0.0489$

- What happens as we keep increasing k?

- Optimal value of k: $n/m \ln(2)$
 - In our case: Optimal $k = 8 \ln(2) = 5.54 \approx 6$
 - Error at $k = 6$: $(1 - e^{-3/4})^6 = 0.0216$

Optimal k: k which gives the lowest false positive probability
Bloom filters guarantee no false negatives, and use limited memory
- Great for pre-processing before more expensive checks

Suitable for hardware implementation
- Hash function computations can be parallelized

Is it better to have 1 big B or k small Bs?
- It is the same: \((1 - e^{-km/n})^k\) vs. \((1 - e^{-m/(n/k)})^k\)
- But keeping 1 big B is simpler
(2) Counting Distinct Elements
Counting Distinct Elements

- **Problem:**
 - Data stream consists of a universe of elements chosen from a set of size N
 - Maintain a count of the number of distinct elements seen so far

- **Obvious approach:**
 Maintain the set of elements seen so far
 - That is, keep a hash table of all the distinct elements seen so far
Applications

- How many different words are found at a site which is among the Web pages being crawled?
 - Unusually low or high numbers could indicate artificial pages (spam?)

- How many different Web pages does each customer request in a week?

- How many distinct products have we sold in the last week?
Real problem: What if we do not have space to maintain the set of elements seen so far?

Estimate the count in an unbiased way

Accept that the count may have a little error, but limit the probability that the error is large
Pick a hash function h that maps each of the N elements to at least $\log_2 N$ bits

For each stream element a, let $r(a)$ be the number of trailing 0s in $h(a)$

- $r(a) = \text{position of first 1 counting from the right}$
- E.g., say $h(a) = 12$, then 12 is 1100 in binary, so $r(a) = 2$

Record $R = \text{the maximum } r(a) \text{ seen}$

- $R = \max_a r(a)$, over all the items a seen so far

Estimated number of distinct elements $= 2^R$
Very very rough and heuristic intuition why Flajolet-Martin works:

- $h(a)$ hashes a with equal prob. to any of N values
- Then $h(a)$ is a sequence of $\log_2 N$ bits, where 2^{-r} fraction of all as have a tail of r zeros
 - About 50% of as hash to ****0
 - About 25% of as hash to **00
 - So, if we saw the longest tail of $r=2$ (i.e., item hash ending *100) then we have probably seen about 4 distinct items so far
- So, it takes to hash about 2^r items before we see one with zero-suffix of length r
Now we show why Flajolet-Martin works

Formally, we will show that probability of finding a tail of r zeros:

- Goes to 1 if $m \gg 2^r$
- Goes to 0 if $m \ll 2^r$

where m is the number of distinct elements seen so far in the stream

Thus, 2^R will almost always be around $m!$
What is the probability that a given $h(a)$ ends in at least r zeros? It is 2^{-r}

- $h(a)$ hashes elements uniformly at random
- Probability that a random number ends in at least r zeros is 2^{-r}

Then, the probability of NOT seeing a tail of length r among m elements:

$$\left(1 - 2^{-r}\right)^m$$

- Prob. all end in fewer than r zeros.
- Prob. that given $h(a)$ ends in fewer than r zeros
Why It Works: More formally

- **Note:** \((1 - 2^{-r})^m = (1 - 2^{-r})^{2^r(m - r)} \approx e^{-m^{2-r}}\)

- Prob. of NOT finding a tail of length \(r\) is:
 - If \(m << 2^r\), then prob. tends to 1
 - \((1 - 2^{-r})^m \approx e^{-m^{2-r}} = 1\) as \(m/2^r \to 0\)
 - So, the probability of finding a tail of length \(r\) tends to 0
 - If \(m >> 2^r\), then prob. tends to 0
 - \((1 - 2^{-r})^m \approx e^{-m^{2-r}} = 0\) as \(m/2^r \to \infty\)
 - So, the probability of finding a tail of length \(r\) tends to 1

- Thus, \(2^R\) will almost always be around \(m\)!
Why It Doesn’t Work

- $E[2^R]$ is actually infinite
 - Probability halves when $R \rightarrow R+1$, but value doubles
- Workaround involves using many hash functions h_i and getting many samples of R_i
- How are samples R_i combined?
 - Average? What if one very large value 2^{R_i}?
 - Median? All estimates are a power of 2
- Solution:
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians
(3) Computing Moments
Suppose a stream has elements chosen from a set A of N values

Let m_i be the number of times value i occurs in the stream

The k^{th} moment is

$$\sum_{i \in A} (m_i)^k$$

This is the same way as moments are defined in statistics. But there we often “center” the moment by subtracting the mean.
Special Cases

\[\sum_{i \in A} (m_i)^k \]

- **0th moment** = number of distinct elements
 - The problem just considered
- **1st moment** = Total number of elements = length of the stream
 - Easy to compute
- **2nd moment** = *surprise number* \(S \) = a measure of how uneven the distribution is
Moments

- Third Moment is Skew:

- Fourth moment: Kurtosis
 - peakedness (width of peak), tail weight, and lack of shoulders (distribution primarily peak and tails, not in between).
Example: Surprise Number

- Stream of length 100
- 11 distinct values

Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Surprise $S = 910$

Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Surprise $S = 8,110$
AMS Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We pick and keep track of many variables X:
 - For each variable X we store $X.el$ and $X.val$
 - $X.el$ corresponds to the item i
 - $X.val$ corresponds to the count m_i of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_i m_i^2$
One Random Variable (X)

- **How to set X.val and X.el?**
 - Assume stream has length \(n \) (we relax this later)
 - Pick some random time \(t \) \((t<n)\) to start, so that any time is equally likely
 - Let the stream have item \(I \) at time \(t \). *We set X.el = i*
 - Then we maintain count \(c \) \((X.val = c)\) of the number of \(is \) in the stream starting from the chosen time \(t \)

- **Then the estimate of the 2\(^{nd}\) moment \((\sum_i m_i^2)\) is:**
 \[
 S = f(X) = n (2 \cdot c - 1)
 \]
 - Note, we will keep track of multiple \(Xs, (X_1, X_2, \ldots X_k) \) and our final estimate will be \(S = 1/k \sum_j^k f(X_j) \)
2nd moment is $S = \sum_i m_i^2$

\mathbf{c}_t ... number of times item at time t appears from time t onwards ($c_1=m_a$, $c_2=m_a-1$, $c_3=m_b$)

$E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n (2c_t - 1)$

$= \frac{1}{n} \sum_i n (1 + 3 + 5 + \cdots + 2m_i - 1)$

m_i ... total count of item i in the stream (we are assuming stream has length n)

Group times by the value seen

Time t when the last i is seen ($c_t=1$)

Time t when the penultimate i is seen ($c_t=2$)

Time t when the first i is seen ($c_t=m_i$)
Expectation Analysis

- **Count:**
 - 1
 - 2
 - 3
 - \(m_a \)

- **Stream:**
 - a
 - a
 - b
 - b
 - b
 - a
 - b
 - a

\[
E[f(X)] = \frac{1}{n} \sum_i n \left(1 + 3 + 5 + \cdots + 2m_i - 1 \right)
\]

- **Little side calculation:**
 \[
 (1 + 3 + 5 + \cdots + 2m_i - 1) = \sum_{i=1}^{m_i} (2i - 1) = 2 \frac{m_i(m_i+1)}{2} - m_i = (m_i)^2
 \]

- **Then**
 \[
 E[f(X)] = \frac{1}{n} \sum_i n \ (m_i)^2
 \]

- **So,**
 \[
 E[f(X)] = \sum_i (m_i)^2 = S
 \]

- **We have the second moment (in expectation)**!
Higher-Order Moments

- For estimating k^{th} moment we essentially use the same algorithm but change the estimate:
 - For $k=2$ we used $n \cdot (2 \cdot c - 1)$
 - For $k=3$ we use: $n \cdot (3 \cdot c^2 - 3c + 1)$ (where $c=X.val$)

- Why?
 - For $k=2$: Remember we had $(1 + 3 + 5 + \cdots + 2m_i - 1)$ and we showed terms $2c-1$ (for $c=1,\ldots,m$) sum to m^2
 - Note: $2c - 1 = c^2 - (c - 1)^2$
 - $\sum_{c=1}^{m}(2c - 1) = \sum_{c=1}^{m} c^2 - \sum_{c=1}^{m}(c - 1)^2 = m^2$
 - For $k=3$: $c^3 - (c-1)^3 = 3c^2 - 3c + 1$

- Generally: Estimate $= n \cdot (c^k - (c - 1)^k)$
In practice:
- Compute $f(X) = n(2c - 1)$ for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages

Problem: Streams never end
- We assumed there was a number n, the number of positions in the stream
- But real streams go on forever, so n is a variable – the number of inputs seen so far
(1) The variables X have n as a factor – keep n separately; just hold the count in X

(2) Suppose we can only store k counts. We must throw some Xs out as time goes on:

- **Objective:** Each starting time t is selected with probability k/n
- **Solution:** (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the n^{th} element arrives ($n > k$), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability
Counting Itemsets
New Problem: Given a stream, which items appear more than \(s \) times in the window?

Possible solution: Think of the stream of baskets as one binary stream per item

- \(1 = \) item present; \(0 = \) not present
- Use **DGIM** to estimate counts of 1s for all items

At least 1 of size 16. Partially beyond window.
In principle, you could count frequent pairs or even larger sets the same way
- One stream per itemset

Drawbacks:
- Only approximate
- Number of itemsets is way too big
Exponentially Decaying Windows

- **Exponentially decaying windows**: A heuristic for selecting likely frequent item(sets)
 - What are “currently” most popular movies?
 - Instead of computing the raw count in last N elements
 - Compute a smooth aggregation over the whole stream
 - If stream is a_1, a_2, \ldots and we are taking the sum of the stream, take the answer at time t to be:
 \[
 \sum_{i=1}^{t} a_i (1 - c)^{t-i}
 \]
 - c is a constant, presumably tiny, like 10^{-6} or 10^{-9}
 - When new a_{t+1} arrives:
 Multiply current sum by $(1-c)$ and add a_{t+1}
Example: Counting Items

- If each a_i is an “item” we can compute the **characteristic function** of each possible item x as an Exponentially Decaying Window
 - That is: $\sum_{i=1}^{t} \delta_i \cdot (1 - c)^{t-i}$
 where $\delta_i = 1$ if $a_i=x$, and 0 otherwise
 - **In other words:** Imagine that for each item x we have a binary stream (1 if x appears, 0 if x does not appear)
 - Then, when a new item x arrives:
 - Multiply all counts by $(1-c)$
 - Add +1 to count for item x
 - **Call this sum the “weight” of item x**
Important property: Sum over all weights $\sum_t (1 - c)^t$ is $1/[1 - (1 - c)] = 1/c$
What are “currently” most popular movies?

Suppose we want to find movies of weight > ½

Important property: Sum over all weights $\sum_t (1 - c)^t$ is $1/[(1 - (1 - c)]) = 1/c$

- That means that no item can have weight greater than $1/c$

Thus:

- There cannot be more than $2/c$ movies with weight of $½$ or more

 - Why? Assume wgt. of item is $½$. How many items n can we have so that the sum is $<1/c$; Answer: $n^{½} < 1/c \Rightarrow n < 2/c$

So, $2/c$ is a limit on the number of movies being counted at any time
Count (some) itemsets in an Enterprise Data Warehouse

- What are currently “hot” itemsets?
 - **Problem:** Too many itemsets to keep counts of all of them in memory

When a basket B comes in:

- Multiply all counts by \((1-c)\)
- For uncounted items in B, create new count
- Add 1 to count of any item in B and to any *itemset* contained in B that is already being counted
- **Drop counts** < \(\frac{1}{2}\)
- Initiate new counts (next slide)
Initiation of New Counts

- Start a count for an itemset \(S \subseteq B \) if every proper subset of \(S \) had a count prior to arrival of basket \(B \)
 - **Intuitively:** If all subsets of \(S \) are being counted, this means they are “frequent/hot” and thus \(S \) has a potential to be “hot”

- **Example:**
 - Start counting \(S=\{i, j\} \) iff both \(i \) and \(j \) were counted prior to seeing \(B \)
 - Start counting \(S=\{i, j, k\} \) iff \(\{i, j\} \), \(\{i, k\} \), and \(\{j, k\} \) were all counted prior to seeing \(B \)
How many counts do we need?

- Counts for single items < \((2/c) \cdot \text{(avg. number of items in a basket)}\)

- Counts for larger itemsets = ??

- But we are conservative about starting counts of large sets
 - If we counted every set we saw, one basket of 20 items would initiate 1M counts