Late period deadline for HW4 will be 11:59 AM on Monday so that we can release solutions prior to the exam.

Extend the exam period to Monday 2 PM - Wednesday 2PM
Prediction at round \(t \) is:
\[
\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)
\]

Goal: Find tree \(f_t(\cdot) \) that minimizes:

\[
\text{obj}^{(t)} = \sum_{i=1}^{n} l \left(y_i, \hat{y}_i^{(t)} \right) + \omega (f_t)
\]

The optimal objective is:

\[
\text{obj}^* = -\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T
\]

- \(G_j, H_j \) depend on the loss function, \(T = \# \) of leaves.

In principle we could:

- Enumerate possible tree structures \(f \) and take the one that minimizes \(\text{obj} \)
In practice we grow tree greedily:

- Start with tree with depth 0
- For each leaf node in the tree, try to add a split
- The change of the objective after adding a split is:

\[
Gain = \frac{1}{2} \left[\frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} \right] - \gamma
\]

- Take the split that gives best gain

Next: How to find the best split?
How to Find the Best Split?

- **For each node, enumerate over all features**
 - For each feature, sort the instances by feature value
 - Use a linear scan to decide the best split along that feature
 - Take the best split solution along all the features

- **Pre-stopping:**
 - Stop split if the best split have negative gain
 - But maybe a split can benefit future splits.

- **Post-Prunning:**
 - Grow a tree to maximum depth, recursively prune all the leaf splits with negative gain.
Add a new tree $f_t(x)$ in each iteration

- Compute necessary statistics for our objective

\[g_i = \partial_{\hat{y}(t-1)} l(y_i, \hat{y}(t-1)), \quad h_i = \partial^2_{\hat{y}(t-1)} l(y_i, \hat{y}(t-1)) \]

- Greedily grow the tree that minimizes the objective:

\[
Obj = -\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T
\]

Add $f_t(x)$ to our ensemble model

\[
y(t) = y(t-1) + \epsilon f_t(x_i)
\]

Repeat until we use M ensemble of trees

ϵ is called step-size or shrinkage, usually set around 0.1

Goal: prevent overfitting
XGBoost

- **XGBoost:** eXtreme Gradient Boosting
 - A highly scalable implementation of gradient boosted decision trees with regularization

 Widely used by data scientists and provides state-of-the-art results on many problems!

- **System optimizations:**
 - **Parallel tree constructions** using column block structure
 - **Distributed Computing** for training very large models using a cluster of machines.
 - **Out-of-Core Computing** for very large datasets that don’t fit into memory.
Note to other teachers and users of these slides: We would be delighted if you found our material useful for giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. If you make use of a significant portion of these slides in your own lecture, please include this message, or a link to our web site: http://www.mmds.org

Advertising on the Web

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
Charilaos Kanatsouli, Stanford University
http://cs246.stanford.edu
Online Algorithms

- **Classic model of algorithms**
 - You get to see the entire input, then compute some function of it
 - In this context, “offline algorithm”

- **Online Algorithms**
 - You get to see the input one piece at a time, and need to make irrevocable decisions along the way
 - Similar to the data stream model
Sponsored Search: Ads

- Query-to-advertiser graph:

 [Andersen, Lang: Communities from seed sets, 2006]
This is an online problem: We have to make decisions as queries/topics show up. We do not know what topics will show up in the future.
Online Bipartite Matching
Example: Bipartite Matching

Nodes: Boys and Girls; Links: Preferences

Goal: Match boys to girls so that the most preferences are satisfied

Note: edges are only preferences with no weight or order.
Example: Bipartite Matching

\[M = \{(1,a),(2,b),(3,d)\} \] is a matching

Cardinality of matching = \(|M| = 3 \)

Matching means that we are not using any vertex twice
Example: Bipartite Matching

\[M = \{(1,c),(2,b),(3,d),(4,a)\} \text{ is a perfect matching} \]

Perfect matching … all vertices of the graph are matched
Maximum matching … matching that contains the largest possible number of matches
Problem: Find a maximum matching for a given bipartite graph
- A perfect one if it exists

But what if we do not know the entire graph upfront?
Initially, we are given the set **boys**

In each **round**, **one girl’s choices are revealed**

- That is, the girl’s **edges** are revealed

At that time, we have to decide to either:

- Pair the **girl** with a **boy**
- Do not pair the **girl** with any **boy**

Example of application:
Assigning tasks to servers

Note: Matching means that we are not using any girl or boy twice
Online Graph Matching: Example

1 → a
2 → b
3 → c
4 → d

(1,a) (2,b) (3,d)
Greedy Algorithm

- Greedy algorithm for the online graph matching problem:
 - Pair the new girl with any eligible boy
 - If there is none, do not pair the girl

- How good is the algorithm?
For input I, suppose greedy produces matching M_{greedy} while an optimal matching is M_{opt}.

Competitive ratio =

$$\min_{\text{all possible inputs } I} \left(\frac{|M_{\text{greedy}}|}{|M_{\text{opt}}|} \right)$$

(what is greedy’s worst performance over all possible inputs I)
Consider a case: $M_{\text{greedy}} \neq M_{\text{opt}}$

Consider the set G of girls matched in M_{opt} but not in M_{greedy}

(1) By definition of G:
$$|M_{\text{opt}}| \leq |M_{\text{greedy}}| + |G|$$

(2) Define set B of boys linked to girls in G

- Notice boys in B are already matched in M_{greedy}. Why?
 - If there would exist such non-matched (by M_{greedy}) boy adjacent to a non-matched girl then greedy would have matched them

So: $|M_{\text{greedy}}| \geq |B|$
Analyzing the Greedy Algorithm

- **Summary so far:**
 - Girls G matched in M_{opt} but not in M_{greedy}
 - Boys B adjacent to girls in G
 - (1) $|M_{opt}| \leq |M_{greedy}| + |G|$
 - (2) $|M_{greedy}| \geq |B|$

- Optimal matches all girls in G to (some) boys in B
 - (3) $|G| \leq |B|$

- Combining (2) and (3):
 - (4) $|G| \leq |B| \leq |M_{greedy}|$
So we have:

- (1) \(|M_{opt}| \leq |M_{greedy}| + |G|\)
- (4) \(|G| \leq |B| \leq |M_{greedy}|\)

Combining (1) and (4):

- Worst case is when \(|G| = |B| = |M_{greedy}|\)
- \(|M_{opt}| \leq |M_{greedy}| + |M_{greedy}|\)
- Then \(|M_{greedy}| / |M_{opt}| \geq 1/2\)
Worst-case Scenario

(1,a)
(2,b)
Web Advertising
History of Web Advertising

- **Banner ads (1995-2001)**
 - Initial form of web advertising
 - Popular websites charged $X for every 1,000 “impressions” of the ad
 - Called “**CPM**” rate (Cost per thousand impressions)
 - Modeled similar to TV, magazine ads
 - From **untargeted** to **demographically targeted**
 - Low click-through rates
 - Low ROI for advertisers
Performance-based Advertising

- Introduced by Overture around 2000
 - Advertisers **bid on search keywords**
 - When someone searches for that keyword, the highest bidder’s ad is shown
 - Advertiser is charged only if the ad is clicked on

- Similar model adopted by Google with some changes around 2002
 - Called **Adwords**
Ads vs. Search Results

GEICO Car Insurance. Get an auto insurance quote and save today...
GEICO auto insurance, online car insurance quote, motorcycle insurance quote, online insurance sales and service from a leading insurance company.
www.geico.com/ - 21k - Sep 22, 2005 - Cached - Similar pages
 Auto Insurance - Buy Auto Insurance
 Contact Us - Make a Payment
 More results from www.geico.com »

Geico, Google Settle Trademark Dispute
The case was resolved out of court, so advertisers are still left without legal guidance on use of trademarks within ads or as keywords.

Google and GEICO settle AdWords dispute | The Register
Google and car insurance firm GEICO have settled a trade mark dispute over ... Car insurance firm GEICO sued both Google and Yahoo! subsidiary Overture in ...
www.theregister.co.uk/2005/09/09/google_geico_settlement/ - 21k - Cached - Similar pages

GEICO v. Google
... involving a lawsuit filed by Government Employees Insurance Company (GEICO). GEICO has filed suit against two major Internet search engine operators, ...
www.consumeraffairs.com/news04/geico_google.html - 19k - Cached - Similar pages
Performance-based advertising works!
 - Multi-billion-dollar industry

Interesting problem:
Which ads to show for a given query?
 - (Today’s lecture)

If I am an advertiser, which search terms should I bid on and how much should I bid?
 - (Not focus of today’s lecture)
A stream of queries arrives at the search engine: q_1, q_2, \ldots
Several advertisers bid on each query
When query q_i arrives, search engine must pick a subset of advertisers to show their ads

Goal: Maximize search engine’s revenues

- **Simple solution:** Instead of raw bids, use the “expected revenue per click” (i.e., $\text{Bid} \times \text{CTR}$)
- **Clearly we need an online algorithm!**
The Adwords Innovation

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Bid</th>
<th>CTR</th>
<th>Bid * CTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$1.00</td>
<td>1%</td>
<td>1 cent</td>
</tr>
<tr>
<td>B</td>
<td>$0.75</td>
<td>2%</td>
<td>1.5 cents</td>
</tr>
<tr>
<td>C</td>
<td>$0.50</td>
<td>2.5%</td>
<td>1.25 cents</td>
</tr>
</tbody>
</table>

Click through rate

Expected revenue
The Adwords Innovation

Instead of sorting advertisers by bid, sort by expected revenue.

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Bid</th>
<th>CTR</th>
<th>Bid * CTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>$0.75</td>
<td>2%</td>
<td>1.5 cents</td>
</tr>
<tr>
<td>C</td>
<td>$0.50</td>
<td>2.5%</td>
<td>1.25 cents</td>
</tr>
<tr>
<td>A</td>
<td>$1.00</td>
<td>1%</td>
<td>1 cent</td>
</tr>
</tbody>
</table>
Limitations of Simple Algorithm

Instead of sorting advertisers by bid, sort by expected revenue

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Bid</th>
<th>CTR</th>
<th>Bid * CTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>$0.75</td>
<td>2%</td>
<td>1.5 cents</td>
</tr>
<tr>
<td>C</td>
<td>$0.50</td>
<td>2.5%</td>
<td>1.25 cents</td>
</tr>
<tr>
<td>A</td>
<td>$1.00</td>
<td>1%</td>
<td>1 cent</td>
</tr>
</tbody>
</table>

Challenges:

- CTR of an ad is unknown
- Advertisers have limited budgets and bid on multiple queries
Complications: Budget

- Two complications:
 - Budget
 - CTR of an ad is unknown

1) Budget: Each advertiser has a limited budget
 - Search engine guarantees that the advertiser will not be charged more than their daily budget
2) CTR (Click-Through Rate): Each ad-query pair has a different likelihood of being clicked

- Advertiser 1 bids $2 on query A, click probability = 0.1
- Advertiser 2 bids $1 on query B, click probability = 0.5

CTR is predicted or measured historically
- Averaged over a time period

Some complications we will not cover:

- 1) CTR is position dependent:
 - Ad #1 is clicked more than Ad #2
Some complications we will cover:

2) Exploration vs. exploitation

Exploit: Should we keep showing an ad for which we have good estimates of click-through rate?

or

Explore: Shall we show a brand new ad to get a better sense of its click-through rate?
Online Algorithms
The BALANCE Algorithm
Given:

1. A set of bids by advertisers for search queries
2. A click-through rate for each advertiser-query pair
3. A budget for each advertiser (say for 1 month)
4. A limit on the number of ads to be displayed with each search query

Respond to each search query with a set of advertisers such that:

1. The size of the set is no larger than the limit on the number of ads per query
2. Each advertiser has bid on the search query
3. Each advertiser has enough budget left to pay for the ad if it is clicked upon
Greedy Algorithm

- **Our setting: Simplified environment**
 - There is 1 ad shown for each query
 - All advertisers have the same budget B
 - All ads are equally likely to be clicked
 - Bid value of each ad is the same ($=1$)

- **Simplest algorithm is greedy:**
 - For a query pick any advertiser who has bid 1 for that query
 - **Competitive ratio of greedy is 1/2**
Two advertisers A and B

- A bids on query \(x \), B bids on \(x \) and \(y \)
- Both have budgets of $4

Query stream: \(x \ x \ x \ x \ y \ y \ y \ y \)

- Worst case greedy choice: \(B \ B \ B \ B _ _ _ _ \)
- Optimal: \(A \ A \ A \ A \ B \ B \ B \ B \)
- Competitive ratio = \(\frac{1}{2} \)

This is the worst case!

- **Note:** Greedy algorithm is deterministic – it always resolves draws in the same way
- **BALANCE** Algorithm by Mehta, Saberi, Vazirani, and Vazirani
 - For each query, pick the advertiser with the largest unspent budget
 - Break ties arbitrarily (*but in a deterministic way*)
Example: BALANCE

- Two advertisers A and B
 - A bids on query x, B bids on x and y
 - Both have budgets of $4

- Query stream: x x x x y y y y

- BALANCE choice: A B A B B B _ _
 - Optimal: A A A A B B B B

- In general: For BALANCE on 2 advertisers
 Competitive ratio = 3/4
Consider simple case (w.l.o.g.):
- 2 advertisers, A_1 and A_2, each with budget $B \geq 1$
- Optimal solution exhausts both advertisers’ budgets

BALANCE must exhaust at least one budget:
- If not, we can allocate more queries
 - Whenever BALANCE makes a mistake (both advertisers bid on the query), advertiser’s unspent budget only decreases
 - Since optimal exhausts both budgets, one will for sure get exhausted
- Assume BALANCE exhausts A_2’s budget, but allocates x queries fewer than the optimal
 - So revenue of $BALANCE = 2B - x$ (where OPT is $2B$)
- Let’s work out what x is!
Analyzing Balance

Opt revenue = 2B

Balance revenue = 2B - x = B + y

We claim y ≥ x (next slide).
Balance revenue is minimum for x = y = B/2.
Minimum Balance revenue = 3B/2.
Competitive Ratio = 3/4.
Analyzing `BALANCE`: What’s x?

Optimal revenue = $2B$
Assume Balance gives revenue = $2B - x = B + y$
Assume we exhausted A_2’s budget

Notice: Unassigned queries should be assigned to A_2 (since if we could assign to A_1 we would since we still have the budget)

Goal: Show we have $y \geq B/2$

Case 1) `BALANCE` assigns $\geq B/2$ blue queries to A_1.
Then trivially, $y \geq B/2$
Optimal revenue = $2B$

Assume Balance gives revenue $= 2B - x = B + y$

Assume we exhausted A_2’s budget

Unassigned queries should be assigned to A_2
(if we could assign to A_1 we would since we still have the budget)

Goal: Show we have $y \geq B/2$

Balance revenue is minimum for $x = y = B/2$

Minimum Balance revenue $= 3B/2$

Competitive Ratio: $\text{BAL/OPT} = 3/4$

Case 2) BALANCE assigns $>B/2$ blue queries to A_2.

Consider the last blue query assigned to A_2.
At that time, A_2’s unspent budget must have been at least as big as A_1’s.
That means at least as many queries have been assigned to A_1 as to A_2.
At this point, we have already assigned at least $B/2$ queries to A_2.
So, $x \leq B/2$ and $x + y = B$ then $y > B/2$
In the general case, worst competitive ratio of BALANCE is $1 - \frac{1}{e} = \text{approx. 0.63}$

- $e = 2.7182$

- Interestingly, no online algorithm has a better competitive ratio!

Let’s see the worst case example that gives this ratio
Worst case for BALANCE

- **N advertisers:** A_1, A_2, \ldots, A_N
 - Each with budget $B > N$
- **Queries:**
 - $N \cdot B$ queries appear in N rounds of B queries each
- **Bidding:**
 - Round 1 queries: bidders A_1, A_2, \ldots, A_N
 - Round 2 queries: bidders A_2, A_3, \ldots, A_N
 - Round i queries: bidders A_i, \ldots, A_N
- **Optimum allocation:**
 Allocate all round i queries to A_i
 - Optimum revenue $N \cdot B$
BALANCE assigns each of the queries in round 1 to \(N\) advertisers.

After \(k\) rounds, sum of allocations \(S_k\) to each of advertisers \(A_1, A_2, \ldots, A_N\) is

\[
S_k = S_{k+1} = \cdots = S_N = \sum_{i=1}^{k} \frac{B}{N-(i-1)}
\]

If we find the smallest \(k\) such that \(S_k \geq B\), then after \(k\) rounds we cannot allocate any queries to any advertiser.
BALANCE: Analysis

Can divide everything by B:

\[
\begin{align*}
B/1 & \quad B/2 & \quad B/3 & \quad \ldots & \quad B/(N-(k-1)) & \quad \ldots & \quad B/(N-1) & \quad B/N \\
S_1 & \quad S_2 & \quad S_k = B
\end{align*}
\]

\[
\begin{align*}
1/1 & \quad 1/2 & \quad 1/3 & \quad \ldots & \quad 1/(N-(k-1)) & \quad \ldots & \quad 1/(N-1) & \quad 1/N \\
S_1 & \quad S_2 & \quad S_k = 1
\end{align*}
\]
Fact: $H_n = \sum_{i=1}^{n} \frac{1}{i} \approx \ln(n)$ for large n

- Result due to Euler

$$1/1 \quad 1/2 \quad 1/3 \quad ... \quad 1/(N-(k-1)) \quad ... \quad 1/(N-1) \quad 1/N$$

$$\ln(N)$$

$$\ln(N)-1$$

$S_k = 1$ implies: $H_{N-k} = \ln(N) - 1 = \ln\left(\frac{N}{e}\right)$

We also know: $H_{N-k} = \ln(N - k)$

So: $N - k = \frac{N}{e}$

Then: $k = N\left(1 - \frac{1}{e}\right)$

N terms sum to $\ln(N)$.

Last k terms sum to 1.

First $N-k$ terms sum to $\ln(N-k)$ but also to $\ln(N)-1$.
So after the first \(k = N(1 - 1/e) \) rounds, we cannot allocate a query to any advertiser.

- **Revenue** = \(B \cdot N \cdot (1 - 1/e) \)

- **Competitive ratio** = \(1 - 1/e \)

Note: So far we assumed:
- All advertisers have the same budget \(B \)
- All advertisers bid 1 for the ad
- (but each advertiser can bid on any subset of ads)
Arbitrary bids and arbitrary budgets!

Consider we have 1 query q, advertiser i

- Bid = x_i
- Budget = b_i

In a general setting BALANCE can be terrible

- Consider two advertisers A_1 and A_2
 - A_1: $x_1 = 1$, $b_1 = 110$
 - A_2: $x_2 = 10$, $b_2 = 100$
- Consider we see 10 instances of q
- BALANCE always selects A_1 and earns 10
- Optimal earns 100
Arbitrary bids: consider query q, bidder i
- Bid = x_i
- Budget = b_i
- Amount spent so far = m_i
- Fraction of budget left over $f_i = 1 - m_i / b_i$
- Define $\psi_i(q) = x_i(1 - e^{-f_i})$

Allocate query q to bidder i with largest value of $\psi_i(q)$

Same competitive ratio $(1 - 1/e) = 0.63$