Matrix Sketching in Data Streams

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
Mina Ghashami, Amazon
http://cs246.stanford.edu
In many applications, we can represent data as a matrix: e.g. text analysis, recommendation.
Data as a Matrix

- Think of data as \(A \in \mathbb{R}^{n \times d} \) containing \(n \) row vectors in \(\mathbb{R}^d \), and typically \(n \gg d \)

- Some examples of typical web-scale data:

<table>
<thead>
<tr>
<th>Data</th>
<th>Rows</th>
<th>Columns</th>
<th>(n)</th>
<th>(d)</th>
<th>sparse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textual</td>
<td>Documents</td>
<td>Words</td>
<td>(> 10^{10})</td>
<td>(10^5 - 10^7)</td>
<td>yes</td>
</tr>
<tr>
<td>Visual</td>
<td>Images</td>
<td>Pixels, SIFT</td>
<td>(> 10^8)</td>
<td>(10^5 - 10^6)</td>
<td>no</td>
</tr>
<tr>
<td>Audio</td>
<td>Songs</td>
<td>Frequencies</td>
<td>(> 10^8)</td>
<td>(10^5 - 10^6)</td>
<td>no</td>
</tr>
<tr>
<td>Machine Learning</td>
<td>Examples</td>
<td>Features</td>
<td>(> 10^6)</td>
<td>(10^2 - 10^4)</td>
<td>yes/no</td>
</tr>
<tr>
<td>Financial</td>
<td>Prices</td>
<td>Items, Stocks</td>
<td>(> 10^6)</td>
<td>(10^3 - 10^5)</td>
<td>no</td>
</tr>
</tbody>
</table>
Rank-k approximation to A computes a smaller matrix B of rank k such that B approximates A.

Rank-k Approximation

Given $A \in \mathbb{R}^{n \times d}$ with $\text{rank}(A) = r$, compute a concise matrix B with rank $k \ll r$ such that it approximates A "accurately".
Review: rank-k approximation

- Rank-k approximation to A computes a smaller matrix B of rank k such that B approximates A

- B is much smaller than A that it fits in memory
- Rank(B) << rank(A)
 - If A is a document-term matrix with 10 billion documents and 1 million words $A \in \mathbb{R}^{10^{10}\times10^6}$ then B would probably be $B \in \mathbb{R}^{1000\times106}$
Review: rank-k approximation

- **Rank-k approximation** to A computes a smaller matrix B of rank k such that B approximates A.

<table>
<thead>
<tr>
<th>Rank-k Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given $A \in \mathbb{R}^{n \times d}$ with $\text{rank}(A) = r$, compute a concise matrix B with rank $k \ll r$ such that it approximates A "accurately".</td>
</tr>
</tbody>
</table>
Review: rank-k approximation

- Rank-k approximation to A computes a smaller matrix B of rank k such that B approximates A.

<table>
<thead>
<tr>
<th>Rank-k Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given $A \in \mathbb{R}^{n \times d}$ with $\text{rank}(A) = r$, compute a concise matrix B with rank $k \ll r$ such that it approximates A "accurately".</td>
</tr>
</tbody>
</table>

- Error difference between A and B is small:
Review: rank-k approximation

- Rank-k approximation to A computes a smaller matrix B of rank k such that B approximates A

Rank-k Approximation

Given $A \in \mathbb{R}^{n \times d}$ with $\text{rank}(A) = r$, compute a concise matrix B with rank $k \ll r$ such that it approximates A "accurately".

- Error difference between A and B is small:
 - The covariance error $\|A^T A - B B^T\|_{2,F}$ is small
Review: rank-k approximation

- **Rank-k approximation** to A computes a smaller matrix B of rank k such that B approximates A.

 \[
 \text{Given } A \in R^{n \times d} \text{ with } \text{rank}(A) = r, \text{ compute a concise matrix } B \text{ with }
 \text{rank } k \ll r \text{ such that it approximates } A \text{ "accurately".}
 \]

- **Error difference between A and B is small:**
 - The **covariance error** $\|A^T A - BTB\|_{2,F}$ is small
 - The **projection error** $\|A - \Pi_B(A)\|_{2,F}$ is small
 - $\Pi_B A :=$ projecting rows of A onto the subspace of B
 - If $B = USV^T$ then, the subspace of B is VV^T
 - Therefore $\Pi_B A = AVV^T$
Best Rank-k Approximation

- We saw that SVD computes the best rank-k approximation to A

\[
A = U \Sigma V^T
\]

- left singular vectors
- singular values
- right singular vectors
SVD computes the **best** rank-k approximation

\[A_k = \arg \min_{\text{rank}(B) \leq k} \| A - B \|_{F,2} \]

So the desirable approximation error is

\[
\| A - \Pi_B(A) \|_{2, F} \leq c \| A - A_k \|_{2, F} \quad \text{or} \quad \| A^T A - B T B \|_{2, F} \leq c \| A - A_k \|_{2, F}
\]
Best Rank-k Approximation

- SVD computes the **best** rank-k approximation to A
 - SVD requires $O(nd^2)$ time and $O(nd)$ space
 - Not applicable in streaming, or distributed settings
 - Not efficient for sparse matrices
Can we compute rank-k approximation in streaming setting?
Streaming matrix sketching
Streaming data matrix

- Every element of the stream is a row vector of fixed d-dimension.
 - We’d like to process A in one pass and using a small amount of memory (sublinear in n)
Streaming data such as any time series data:

- ecommerce purchases
- Traffic sensors
- Activity logs

We can not store the entire data
A large set of data analysis tasks rely on obtaining a **low rank approximation**:

- Dimension reduction
- Anomaly detection
- Data denoising
- Clustering
- Recommendation systems
B is a **sketch** of a streaming matrix A iff

- B is of a fixed **small size** that fits in memory
- At any point in stream, B approximates A
Almost any matrix sketching methods in streaming setting falls into one of these categories:

1. Row sampling based
2. Random projection based and Hashing
3. Iterative sketching
Row Sampling Methods
They select a subset of “important” rows
- Sample w.r.t a well-defined probability distribution
- Often sampling is done with replacement

Methods differ in how they define “importance”
They construct sketch B by:

- assign a probability p_i to each row a_i
- sample l rows from A to construct B
- rescale B appropriately to make it unbiased
An Intuitive way to define “importance” of an item:
- the weight associated to the item, e.g.
 - file records → weights as size of the file,
 - IP addresses → weights as number of times the IP address makes a request

why it is necessary to sample important items?
- Consider a set of weighted items $S = \{(a_1, w_1), (a_2, w_2), \ldots, (a_n, w_n)\}$ that we want to summarize with a small & representative sample.

We define a representative sample as the one estimates total weight of S (i.e. $W_S = \sum_{i=1}^{n} w_i$) in expectation.
Intuition: Row Sampling Methods

- This is achievable with a sample set of size one!
 - Sample any item \((a_j, w_j)\) with an arbitrary fixed probability \(p\), and rescale its weight to \(W_s/p\).
 - Then \(E[\text{weight of the sample}] = p. \ W_s/p = W_s\)

- High variance issue:
 - To lower down the variance, (1) sample heavy items (i.e. important items) with higher prob., and (2) sample more items
 - So sample item \(a_j\) with prob. \(p = w_j/W_s\) and rescale it to \(W_s/p\)
 - If we sample \(l\) items, then rescale items to rescale it to \(W_s/(lp)\)
Row Sampling algorithms

- In matrices,
 - Each item a_j is a row vector
 - Each weight $w_j = \|a_j\|^2$
 - And $\sum_{j=1}^{n} \|a_j\|^2 = \|A\|^2_F$

- Row sampling algorithm based on L2 norm:
 - Let sample size = l, i.e. the sketch B is $l \times d$
 - For every row a_i arriving in the stream,
 - Update $\|A\|^2_F$ by adding $\|a_j\|^2_F$
 - Compute its sampling probability $p_i = \|a_i\|^2 / \|A\|^2_F$
 - Sample it l times (one for each row of B. If it is sampled, replace the corresponding row in B with a_i)
 - Rescale a_i where it is sampled by $1/\sqrt{l \cdot p_i}$
Row Sampling algorithms

- We can show that

\[E[\|B\|_F] = \|A\|_F \]

- If we sample \(\ell = O(k/\varepsilon^2) \) rows, then:

\[\|A - \pi_B(A)\|_F^2 \leq \|A - A_k\|_F^2 + \varepsilon\|A\|_F^2 \]
Row sampling based on L2 norm:

- CUR method: samples rows/columns with probability = squared norm of rows/columns

\[
\begin{pmatrix}
A \\
\end{pmatrix}
\approx
\begin{pmatrix}
\begin{pmatrix}
\end{pmatrix}
\end{pmatrix}
\cdot
\begin{pmatrix}
U \\
\end{pmatrix}
\cdot
\begin{pmatrix}
R
\end{pmatrix}
\]
CUR: Row/column sampling

- Row sampling based on L2 norm:
 - CUR method: samples rows/columns with probability = squared norm of rows/columns

\[
\begin{pmatrix}
A \\
C \\
\end{pmatrix}
\approx
\begin{pmatrix}
C \\
U \\
\end{pmatrix}
\cdot
\begin{pmatrix}
R \\
\end{pmatrix}
\]

Pseudo-inverse of the intersection of \(C\) and \(R\)
CUR: Row/column sampling

- Row sampling based on L2 norm:
 - CUR method: samples rows/columns with probability = squared norm of rows/columns

- Error guarantee: If we sample $c = O\left(\frac{k \log k}{\varepsilon^2}\right)$ columns and $r = O\left(\frac{k \log k}{\varepsilon^2}\right)$ rows, then

 $$\|A - CUR\|_F \leq (2 + \varepsilon)\|A - A_K\|_F$$

 With probability $\geq 98\%$
Row Sampling Methods

+ **Easy interpretation of basis**
 - Since the basis vectors are actual rows/columns

+ **Suitable for Sparse data**
 - Since the basis vectors are actual rows/columns

- **Duplicate columns and rows**
 - Columns of large norms will be sampled multiple times
Random Projection Methods
Key idea: if points in a vector space are projected onto a randomly selected subspace of suitably high dimension, then the distances between points are approximately preserved.

Johnson-Lindenstrauss Transform (JLT): \(d\) datapoints in any dimension (\(\mathbb{R}^n\) for \(n \gg d\)) can get embedded into roughly \(\log d\) dimensional space, such that their pair-wise distances are preserved to some extent.
We define JLT more precisely:

- A random matrix $S \in \mathbb{R}^{r \times n}$ has JLT property if for all vectors $v, v' \in \mathbb{R}^n$,
 \[\|Sv - Sv'\|^2 = (1 \pm \epsilon)\|v - v'\|^2 \]
 with probability at least $1 - \delta$

- There are many ways to construct a matrix S that preserve pair-wise distances.
 - All such matrices are called to have the Johnson-Lindenstrauss Transform (JLT) property
How to construct a JLT matrix

One simple construction of S:

- Pick matrix $S \in \mathbb{R}^{r \times n}$ as an orthogonal projection on a random r-dimensional subspace of \mathbb{R}^n with $r = O(\varepsilon^{-2} \log d)$
 - Rows of S are orthogonal vectors

- Then for any matrix $A \in \mathbb{R}^{n \times d}$, SA preserves pair-wise distances between d datapoints in A
A simpler construction for $S \in \mathbb{R}^{r \times n}$ is:
- to have entries as independent random variables with the standard normal distribution

$$S = \sqrt{\frac{1}{r}} \left[\text{matrix with entries draw from } N(0,1) \right]$$
Another construction for $S \in \mathbb{R}^{r \times n}$ is:

$$S = \sqrt{\frac{1}{r}} \text{[entries as independent +/-1 random var]}$$

This is computationally simpler to construct.
Random Projection Methods

- They use a JLT matrix $S \in \mathbb{R}^{r \times n}$
- Construct the sketch as $B = SA \in \mathbb{R}^{r \times d}$
 - this projects datapoints from a high-dim space \mathbb{R}^n onto a lower-dim subspace \mathbb{R}^r
- They show $\mathbb{E}[B^T B] = A^T \mathbb{E}[S^T S] A = A^T A$

$E[S^T S] = I_n$
Random Projection Methods

- Depending on JLT construction, we achieve different error bounds:
 - If $S \in \mathbb{R}^{r \times n}$ has iid zero-mean ± 1 entries and $r = O\left(\frac{k}{\varepsilon} + k \log k\right)$ and, then

\[
\|A - \pi_{SA}(A)\|_F \leq (1 + \varepsilon)\|A - A_k\|_F
\]
Random Projection Methods

- Computationally efficient
- Sufficiently accurate in practice
- A great pre-processing step in applications

- **Data-oblivious** as their computation involves only a random matrix S
 - Compare to row sampling methods that need to access data to form a sketch
Matrix Hashing Techniques

- Use matrix S that contains one ± 1 per column

Only one non-zero entry in each column of S. The rest of entries are zero

- To build S, use two hash functions:
 - $h: [n] \rightarrow [r]$, and $g:[n] \rightarrow \{-1, +1\}$
Matrix Hashing Techniques

- Very efficient for sparse matrices A
 - can be applied in $O(\text{nnz}(A))$ operations
 - $\text{nnz}(A) = \text{number of non-zeros of } A$

S

$h(i)$

A

B

set $S_{h(i),i} = \pm 1$
Iterative Sketching
They work over a stream $A = \langle a_1, a_2, \ldots, a_n \rangle$

- each a_i is read once, get processed quickly and not read again
- with only a small amount of memory available
State of the art method in this group is called “Frequent Directions”

It is based on Misra-Gries algorithm for finding frequent items in a data stream

We first see how Misra-Gries algorithm for finding frequent items work
 - Then we extend it to matrices
Suppose there is a stream of items, and we want to find frequency $f(i)$ of each item.
If we keep d counters, we can count frequency of every item...

- But it’s not good enough (IP addresses, queries,...)
Let’s keep l counters where $l \ll d$
If a new item arrives in the stream that is already in the counters, we add 1 to its count.
If the new item is not in the counters and we have space, we create a counter for it and set it to 1.
Frequent Items: Misra-Gries

- But what if we don’t have space for it?
Let δ be the median counter at time t.

\[\delta = \ell/2 = 2 \]
Decrease all counts by δ (set it to 0 if less than δ)
Now we have space for new item, so we continue...
Frequent Items: Misra-Gries

- At any time in the stream, the approximated counts for items are what we have kept so far.
Frequent Items: Misra-Gries

- This method undercounts so for any item i

 \[0 \leq f'(i) \leq f(i) \]

- We decrease each count by at most δ_t

 \[
 f'(i) \geq f(i) - \sum \delta_t
 \]

- At any point that we have seen n elements in stream:

 \[
 \frac{l}{2} \sum \delta_t \leq n
 \]

- The error guarantee: \(0 \leq f(i) - f'(i) \leq 2n/l \)
Misra-Gries produces a non-zero approximated frequency $f'(i)$ for all items that their true frequency $f(i) > 2n/l$

$$f(i) - 2n/l \leq f'(i)$$

To find items that appear more than 20% of the time i.e. $f(i) > n/5$, take $l = 10$ counters and run Misra-Gries algorithm
Let’s extend it to vectors and matrices

Stream items are row vectors in d dimension

At any time n in the stream, they form a tall matrix $A \in \mathbb{R}^{n \times d}$

The goal is to find the most frequent directions of A
Frequent Directions

Input: $A \in \mathbb{R}^{n \times d}$, and an integer ℓ

$B \leftarrow$ empty matrix $\in \mathbb{R}^{\ell \times d}$

for $(a_i \in A)$

- Insert a_i into B

 if $(B$ is full)$

 $[U, S, V] \leftarrow \text{svd}(B)$

 $\tilde{S} \leftarrow [\sqrt{S_1^2-S_{\ell/2}^2}, \sqrt{S_2^2-S_{\ell/2}^2}, \ldots, 0, \ldots, 0]$}

 $B \leftarrow \tilde{S} V^T$

return B
Frequent Directions (Lib’13)

Input: \(A \in \mathbb{R}^{n \times d} \), and an integer \(\ell \)

\(B \leftarrow \) empty matrix \(\in \mathbb{R}^{\ell \times d} \)

for \((a_i \in A) \)

- Insert \(a_i \) into \(B \)

if \((B \) is full)

\[
[U, S, V] \leftarrow \text{svd}(B)
\]

\[
\tilde{S} \leftarrow [\sqrt{S_1^2 - S_{i/2}^2}, \sqrt{S_2^2 - S_{i/2}^2} \ldots 0, \ldots, 0]
\]

\(B \leftarrow \tilde{S}V^T \)

return \(B \)
Frequent Directions

\textbf{Input:} \(A \in \mathbb{R}^{n \times d} \), and an integer \(\ell \)
\(B \leftarrow \) empty matrix \(\in \mathbb{R}^{\ell \times d} \)
\textbf{for} \((a_i \in A) \)
\begin{itemize}
 \item Insert \(a_i \) into \(B \)
 \item \textbf{if} \ (B \text{ is full})
 \begin{align*}
 \begin{bmatrix} U, S, V \end{bmatrix} &\leftarrow \text{svd}(B) \\
 \tilde{S} &\leftarrow \begin{bmatrix} \sqrt{S_1^2 - S_{\ell/2}^2}, \sqrt{S_2^2 - S_{\ell/2}^2}, \ldots, 0, \ldots, 0 \end{bmatrix}
 \end{align*}
 \item \(B \leftarrow \tilde{S}V^T \)
\end{itemize}
\textbf{return} \(B \)
Frequent Directions (Lib’13)

Input: \(A \in \mathbb{R}^{n \times d} \), and an integer \(\ell \)

\[B \leftarrow \text{empty matrix} \in \mathbb{R}^{\ell \times d} \]

for \((a_i \in A) \)
- Insert \(a_i \) into \(B \)
- **if** \((B \text{ is full}) \)
 - \([U, S, V] \leftarrow \text{svd}(B) \)
 - \(\tilde{S} \leftarrow \begin{bmatrix} \sqrt{S_1^2 - S_{l/2}^2} & \sqrt{S_2^2 - S_{l/2}^2} & \ldots & 0, \ldots, 0 \end{bmatrix} \)
 - \(B \leftarrow \tilde{S} V^T \)

return \(B \)
Frequent Directions

Input: $A \in \mathbb{R}^{n \times d}$, and an integer ℓ

$B \leftarrow$ empty matrix $\in \mathbb{R}^{\ell \times d}$

for ($a_i \in A$)

- Insert a_i into B

if (B is full)

$$[U, S, V] \leftarrow \text{svd}(B)$$

$$\tilde{S} \leftarrow \begin{bmatrix} \sqrt{S_1^2 - S_{i/2}^2}, & \sqrt{S_2^2 - S_{i/2}^2}, & \ldots & 0, & \ldots & 0 \end{bmatrix}$$

$B \leftarrow \tilde{S} V^T$

return B
Frequent Directions

- Similar to the frequent items case, this method has the following error guarantee:

\[\| A^T A - B T B \| \ll \frac{2}{l} \| A \|_F^2 \]

- And if using \(l = k + k/\epsilon \)

\[\| A - \Pi_B(A) \|_F^2 \ll (1 + \epsilon) \| A - A_k \|_F^2 \]
Sketching in Experiment

$\text{cov-err} := \frac{\|A^T A - B^T B\|_F^2}{\|A\|_F^2}$

- Random Projections
 - [Sarlos FOCS06]
- Hashing
 - [Clarkson+Woodruff STOC13]
- Sampling
 - [Drineas, Kannan, Mahoney SIAM JoC06]
- FrequentDirections
 - [all 0s]
- Naive
 - [SVD]
- Brute Force

Sketch Size

Covariance Error
Sketching in Experiment

Projection Error vs. Sketch Size

- Random Projections
- Hashing
- Sampling
- FrequentDirections
- Naive
- Brute Force

Projection Error: \(\frac{\|A - \pi_B(A)\|_2^2}{\|A - A_k\|_F^2} \), \(k = 10 \)

- [Sarlos FOCS06]
- [Clarkson+Woodruff STOC13]
- [Drineas, Kannan, Mahoney SIAM JoC06]
- [all 0s]
- [SVD]
Matrix Sketching in Streams:

- Row sampling methods
 - CUR
 - L2 norm based sampling
- Random projection methods
 - Johnson Lindenstrauss Transform (JLT)
 - Different ways to construct a JLT matrix
- Iterative sketching methods
 - Misra-Gries algorithm for frequent items
 - Frequent Directions method (state of the art)