MapReduce and Frequent Itemsets Mining

Yang Wang
MapReduce (Hadoop)
Programming model designed for:

- **Large Datasets (HDFS)**
 - Large files broken into chunks
 - Chunks are replicated on different nodes

- **Easy Parallelization**
 - Takes care of scheduling

- **Fault Tolerance**
 - Monitors and re-executes failed tasks
MapReduce

3 Steps

- **Map:**
 - Apply a user written map function to each input element.
 - The output of Map function is a set of key-value pairs.

- **GroupByKey:**
 - Sort and Shuffle: Sort all key-value pairs by key and output key-(list of value pairs)

- **Reduce**
 - User written reduce function applied to each key-[list of value] pairs
Map-Reduce: A diagram

MAP:
Read input and produces a set of key-value pairs

Intermediate

Group by key:
Collect all pairs with same key
(Hash merge, Shuffle, Sort, Partition)

Reduce:
Collect all values belonging to the key and output

Output
Coping with Failure

MapReduce is designed to deal with compute nodes failing

Output from previous phases is stored. Re-execute failed tasks, not whole jobs.

Blocking Property: no output is used until the task is complete. Thus, we can restart a Map task that failed without fear that a Reduce task has already used some output of the failed Map task.
Data Flow Systems

- MapReduce uses two ranks of tasks:
 - One is Map and other is Reduce
 - Data flows from first rank to second rank
- Data Flow Systems generalise this:
 - Allow any number of tasks
 - Allow functions other than Map and Reduce
- Spark is the most popular data-flow system.
 - RDD’s : Collection of records
 - Spread across clusters and read-only.
Frequent Itemsets

- The Market-Basket Model
 - Items
 - Baskets
 - Count how many baskets contain an itemset
 - Support threshold => frequent itemsets

- Application
 - Confidence
 - \(\Pr(D \mid A, B, C) \)
Computation Model

- Count frequent pairs
- Main memory is the bottleneck
- How to store pair counts?
 - Triangular matrix/Table
- Frequent pairs -> frequent items
- A-Priori Algorithm
 - Pass 1 - Item counts
 - Pass 2 - Frequent items + pair counts
- PCY
 - Pass 1 - Hash pairs into buckets
 - Infrequent bucket -> infrequent pairs
 - Pass 2 - Bitmap for buckets
 - Count pairs w/ frequent items and frequent bucket
Main-Memory: Picture of A-Priori

Green box represents the amount of available main memory. Smaller boxes represent how the memory is used.
Main-Memory: Picture of PCY

- **Pass 1**
 - Hash table for pairs
 - Item counts

- **Pass 2**
 - Frequent items
 - Bitmap
 - Counts of candidate pairs
All (Or Most) Frequent Itemsets

- Handle Large Datasets
- Simple Algorithm
 - Sample from all baskets
 - Run A-Priori/PCY in main memory with lower threshold
 - No guarantee
- SON Algorithm
 - Partition baskets into subsets
 - Frequent in the whole => frequent in at least one subset
- Toivonen’s Algorithm
 - Negative Border - not frequent in the sample but all immediate subsets are
 - Pass 2 - Count frequent itemsets and sets in their negative border
 - What guarantee?
Locality Sensitive Hashing and Clustering

Hongtao Sun
Locality-Sensitive Hashing

Main idea:

- **What**: hashing techniques to map similar items to the same bucket → candidate pairs
- **Benefits**: $O(N)$ instead of $O(N^2)$: avoid comparing all pairs of items
 - **Downside**: false negatives and false positives
- **Applications**: similar documents, collaborative filtering, etc.

For the similar document application, the main steps are:

1. **Shingling** - converting documents to set representations
2. **Minhashing** - converting sets to short signatures using random permutations
3. **Locality-sensitive hashing** - applying the “b bands of r rows” technique on the signature matrix to an “s-shaped” curve
Locality-Sensitive Hashing

Shingling:

- Convert documents to set representation using sequences of k tokens
- Example: abcabc with $k = 2$ shingle size and character tokens $\rightarrow \{ab, bc, ca\}$
- Choose large enough $k \rightarrow$ lower probability shingle s appears in document
- Similar documents \rightarrow similar shingles (higher Jaccard similarity)

Jaccard Similarity: $J(S_1, S_2) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$

Minhashing:

- Creates summary signatures: short integer vectors that represent the sets and reflect their similarity
Locality-Sensitive Hashing

General Theory:

● Distance measures d (similar items are “close”):
 ○ Ex) Euclidean, Jaccard, Cosine, Edit, Hamming

● LSH families:
 ○ A family of hash functions H is (d_1, d_2, p_1, p_2)-sensitive if for any x and y:
 ■ If $d(x, y) \leq d_1$, $Pr[h(x) = h(y)] \geq p_1$; and
 ■ If $d(x, y) \geq d_2$, $Pr[h(x) = h(y)] \leq p_2$.

● Amplification of an LSH families (“bands” technique):
 ○ AND construction (“rows in a band”)
 ○ OR construction (“many bands”)
 ○ AND-OR/OR-AND compositions
Locality-Sensitive Hashing

Suppose that two documents have Jaccard similarity s.

Step-by-step analysis of the banding technique (b bands of r rows each)

- Probability that signatures agree in all rows of a particular band:
 - s^r

- Probability that signatures disagree in at least one row of a particular band:
 - $1 - s^r$

- Probability that signatures disagree in at least one row of all of the bands:
 - $(1 - s^r)^b$

- Probability that signatures agree in all rows of a particular band
 ⇒ Become candidate pair:
 - $1 - (1 - s^r)^b$
Locality-Sensitive Hashing

A general strategy for composing families of minhash functions:

AND construction (over r rows in a single band):

- \((d_1, d_2, p_1, p_2)\)-sensitive family \(\Rightarrow (d_1, d_2, p_1^r, p_2^r)\)-sensitive family
- Lowers all probabilities

OR construction (over b bands):

- \((d_1, d_2, p_1, p_2)\)-sensitive family \(\Rightarrow (d_1, d_2, 1 - (1 - p_1)^b, 1 - (1 - p_2)^b)\)-sensitive family
- Makes all probabilities rise

We can try to make \(p_1 \rightarrow 1\) (lower false negatives) and \(p_2 \rightarrow 0\) (lower false positives), but this can require many hash functions.
Clustering

What: Given a set of points and a distance measure, group them into “clusters” so that a point is more similar to other points within the cluster compared to points in other clusters (unsupervised learning - without labels)

How: Two types of approaches

- **Point assignments**
 - Initialize centroids
 - **Assign** points to clusters, iteratively refine

- **Hierarchical**:
 - Each point starts in its own cluster
 - Agglomerative: repeatedly **combine** nearest clusters
Point Assignment Clustering Approaches

- **Best for spherical/convex cluster shapes**
- **k-means**: initialize cluster centroids, assign points to the nearest centroid, iteratively refine estimates of the centroids until convergence
 - Euclidean space
 - Sensitive to initialization (K-means++)
 - Good values of “k” empirically derived
 - Assumes dataset can fit in memory
- **BFR algorithm**: variant of k-means for very large datasets (residing on disk)
 - Keep running statistics of previous memory loads
 - Compute centroid, assign points to clusters in a second pass
Hierarchical Clustering

• Can produce clusters with unusual shapes
 ○ e.g. concentric ring-shaped clusters

• Agglomerative approach:
 ○ Start with each point in its own cluster
 ○ Successively merge two “nearest” clusters until convergence

• Differences from Point Assignment:
 ○ Location of clusters: centroid in Euclidean spaces, “clustroid” in non-Euclidean spaces
 ○ Different intercluster distance measures: e.g. merge clusters with smallest \(\text{max} \) distance (worst case), \(\text{min} \) distance (best case), or \(\text{average} \) distance (average case) between points from each cluster
 ○ Which method works best depends on cluster shapes, often trial and error
Dimensionality Reduction and Recommender Systems

Jayadev Bhaskaran
Dimensionality Reduction

● Motivation
 ○ Discover hidden structure
 ○ Concise description
 ■ Save storage
 ■ Faster processing

● Methods
 ○ SVD
 ■ $M = U\Sigma V^T$
 ● U user-to-concept matrix
 ● V movie-to-concept matrix
 ● Σ “strength” of each concept
 ○ CUR Decomposition
 ■ $M = CUR$
SVD

- \(M = U \Sigma V^T \)
 - \(U^T U = I, V^T V = I, \Sigma \) diagonal with non-negative entries
 - Best low-rank approximation (singular value thresholding)
 - Always exists for any real matrix \(M \)

- Algorithm
 - Find \(\Sigma, V \)
 - Find eigenpairs of \(M^T M \rightarrow (D, V) \)
 - \(\Sigma \) is square root of eigenvalues \(D \)
 - \(V \) is the right singular vectors
 - Similarly \(U \) can be read off from eigenvectors of \(MM^T \)
 - Power method: random init + repeated matrix-vector multiply (normalized) gives principal evec
 - Note: Symmetric matrices
 - \(M^T M \) and \(MM^T \) are both real, symmetric matrices
 - Real symmetric matrix: eigendecomposition \(Q \Lambda Q^T \)
CUR

- **M = CUR**
- **Non-uniform sampling**
 - Row/Column importance proportional to norm
 - U: pseudoinverse of submatrix with sampled rows R & columns C
- **Compared to SVD**
 - Interpretable (actual columns & rows)
 - Sparsity preserved (U,V dense but C,R sparse)
 - May output redundant features

$$\text{SVD: } A = U \Sigma V^T$$

Huge but sparse \rightarrow Big and dense

$$\text{CUR: } A = C U R$$

Huge but sparse \rightarrow Big but sparse

sparse and small

dense but small
Recommender Systems: Content-Based

What: Given a bunch of users, items and ratings, want to predict missing ratings

How: Recommend items to customer x similar to previous items rated highly by x

- **Content-Based**
 - Collect user profile x and item profile i
 - Estimate utility: $u(x,i) = \cos(x,i)$
Recommender Systems: Collaborative Filtering

- **user-user CF vs item-item CF**
 - user-user CF: estimate a user’s rating based on ratings of similar users who have rated the item; similar definition for item-item CF

- **Similarity metrics**
 - Jaccard similarity: *binary*
 - Cosine similarity: *treats missing ratings as “negative”*
 - Pearson correlation coeff: *remove mean of non-missing ratings (standardized)*

- **Prediction of item i from user x:** \((s_{xy} = \text{sim}(x,y))\)

 \[
 r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}
 \]

- Remove baseline estimate and only model rating deviations from baseline estimate, so that we’re not affected by user/item bias
Recommender Systems: Latent Factor Models

Motivation: Collaborative filtering is a local approach to predict ratings based on finding neighbors. Matrix factorization takes a more global view.

Intuition: Map users and movies to (lower-dimensional) latent-factor space. Make prediction based on these latent factors.

Model: \(\hat{r}_{xi} = p_x \cdot q_i \) for user x and movie i
Recommender Systems: Latent Factor Models

\[
\min_{P,Q} \sum_{(x,i) \in \text{training}} (r_{xi} - p_x \cdot q_i)^2 + \lambda_1 \sum_x \|p_x\|^2 + \lambda_2 \sum_i \|q_i\|^2
\]

- Only sum over observed ratings in the training set
- Use regularization to prevent overfitting
- Can solve via SGD (alternating update for P, Q)
- Can be extended to include biases (and temporal biases)

\[
\hat{r}_{xi} = \mu + b_x + b_i + p_x \cdot q_i
\]
PageRank

Lantao Mei
PageRank

- PageRank is a method for determining the importance of webpages
 - Named after Larry Page
- Rank of a page depends on how many pages link to it
- Pages with higher rank get more of a vote
- The vote of a page is evenly divided among all pages that it links to
Example

• $r_a = r_y/2 + r_m$
• $r_y = r_y/2 + r_a/2$
• $r_m = r_a / 2$
Example

Deal with pathological situations by adding a random teleportation term

- \(r_a = 0.8(r_y/2 + r_m) + 0.2/3 \)
- \(r_y = 0.8(r_y/2 + r_a/2) + 0.2/3 \)
- \(r_m = 0.8 \left(r_a / 2 \right) + 0.2/3 \)
PageRank

If $i \rightarrow j$, then $M_{ji} = \frac{1}{d_i}$ else $M_{ji} = 0$

- **PageRank equation** [Brin-Page, ‘98]

 $$r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

- **The Google Matrix A:**

 $$A = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

- We have a recursive problem: $\mathbf{r} = A \cdot \mathbf{r}$
Topic-specific PageRank

- Teleport can only go to a topic-specific set of “relevant” pages (teleport set)

To make this work all we need is to update the teleportation part of the PageRank formulation:

\[A_{ij} = \begin{cases}
\beta M_{ij} + (1 - \beta)/|S| & \text{if } i \in S \\
\beta M_{ij} + 0 & \text{otherwise}
\end{cases} \]

- \(A \) is a stochastic matrix!
Social Network Algorithms

Ansh Shukla
Graph Algorithms

• **Problem:** Finding “communities” in large graphs
 • A community is any structure we’re interested by in the graph.
 • Examples of properties we might care about: overlap, triangles, density.
Personalized PageRank with Sweep

- Problem: Finding densely linked, non-overlapping communities.
- Intuition: Give a score to all nodes, rank nodes by score, and then partition the ranked list into clusters.
- What to know:

(Algorithm) Approximate Personalized PageRank –

- Frame PPR in terms of lazy random walk
- While error measure is too high
 - Run one step of lazy random walk

\[
\begin{align*}
 r_u^{(t+1)} &= \frac{1}{2} r_u^{(t)} + \frac{1}{2} \sum_{i \to u} \frac{1}{d_i} r_i^{(t)} \\
 q_u &= p_u - r_u \\
 \max_{u \in V} \frac{q_u}{d_u} &\geq \epsilon
\end{align*}
\]
Personalized PageRank with Sweep

- **Problem:** Finding densely linked, non-overlapping communities.

- **Intuition:** Give a score to all nodes, rank nodes by score, and then partition the ranked list into clusters.

- **What to know:**

 - **Cut:** Set of edges with only one node in the cluster:

 $$cut(A) = \sum_{i \in A, j \notin A} w_{ij}$$

 Note: This works for weighted and unweighted (set all $w_{ij}=1$) graphs

 ![Diagram](image)
Personalized PageRank with Sweep

• **Problem:** Finding densely linked, non-overlapping communities.

• **Intuition:** Give a score to all nodes, rank nodes by score, and then partition the ranked list into clusters.

• **What to know:**

 Criterion: **Conductance:**
 Connectivity of the group to the rest of the network relative to the density of the group

 \[
 \phi(A) = \frac{|\{(i, j) \in E; i \in A, j \notin A\}|}{\min(\text{vol}(A), 2m - \text{vol}(A))}
 \]
Personalized PageRank with Sweep

- **Problem**: Finding densely linked, non-overlapping communities.
- **Intuition**: Give a score to all nodes, rank nodes by score, and then partition the ranked list into clusters.
- **What to know**:

 Sweep:
 - Sort nodes in decreasing PPR score $r_1 > r_2 > \cdots > r_n$
 - For each i compute $\phi(A_i = \{r_1, \ldots, r_i\})$
 - **Local minima** of $\phi(A_i)$ correspond to good clusters
Motif-based spectral clustering

- **Problem:** Finding densely linked, non-overlapping communities (as before), but changing our definition of “densely linked”.

- **Intuition:** Modify graph so edge weights correspond to our notion of density, modify conductance criteria, run PPR w/ Sweep.

- **What to know:**

 - $W_{ij}^{(M)} = \#$ times (i, j) participates in the motif

![Graph G and Weighted graph $W^{(M)}$]
Motif-based spectral clustering

- **Problem:** Finding densely linked, non-overlapping communities (as before), but changing our definition of “densely linked”.

- **Intuition:** Modify graph so edge weights correspond to our notion of density, modify conductance criteria, run PPR w/ Sweep.

- **What to know:**

 \[
 \phi_M(S) = \frac{\#(\text{motifs cut})}{\text{vol}_M(S)}
 \]
Searching for small communities (trawling)

- Problem: Finding complete bipartite subgraphs $K_{s,t}$
- Intuition: Reframe the problem as one of finding frequent itemsets: think of each vertex as a basket defined by its neighbors. Run A-priori with frequency threshold s to get item sets of size t.
- What to know:

\[a = \{b,c,d\} \]
Graph Embeddings

- **Problem**: Want to represent nodes in graph in vector space while capturing relevant properties like graph topology.
- **Intuition**: Define a mapping from nodes to embeddings.
- Define a node similarity function (dot product)
- Optimize the parameters of the encoder so that: similarities in one representation (graph) match similarities in another (embedding)
Graph Embeddings

- **Problem**: Want to represent nodes in graph in vector space while capturing relevant properties like graph topology.
- **Intuition**: Define a mapping from nodes to embeddings.
Graph Embeddings

- **Problem:** Want to represent nodes in graph in vector space while capturing relevant properties like graph topology.

- **Intuition:**
 - Select a random walk

- p, q model transition probabilities
 - p ... return parameter
 - q ... “walk away” parameter
Graph Embeddings

• **Problem:** Want to represent nodes in graph in vector space while capturing relevant properties like graph topology.

• **Intuition:**
 • Optimize embedding

\[
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} - \log \left(\frac{\exp(z_u^T z_v)}{\sum_{n \in V} \exp(z_u^T z_n)} \right)
\]

- sum over all nodes \(u \)
- sum over nodes \(v \) seen on random walks starting from \(u \)
- predicted probability of \(u \) and \(v \) co-occurring on random walk
Graph Embeddings

- **Problem**: Want to represent nodes in graph in vector space while capturing relevant properties like graph topology.
- **Intuition**:
 - Optimize embedding

\[
\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} - \log(P(v | z_u))
\]
Large-Scale Machine Learning

Jerry Zhilin Jiang
Large-scale machine learning

Overview

• **Supervised learning**
 • given training set with labels \((x_i, y_i)\)
 • Learn the function \(f\) that predicts \(y\) given \(x\), \(f(x) = y\)
 • Why Hard? Need to generalize well to unseen data

• **Classification vs. Regression**
 • Classification: Label \(y\) belongs to a discrete set
 • Regression: Label \(y\) is continuous

• **Methods covered in this course**
 • Decision Tree
 • Support Vector Machine (SVM)
Decision Tree

- **Input:** d attributes (features) $x^{(1)}, x^{(2)}, \ldots, x^{(d)}$
 Can be numerical or categorical

- **Output:** y (label)
 Either numerical (regression) or categorical (classification)

- Given data point x_i
 Start from root, “drop” it down the tree until it hits a leaf node

- Make prediction accordingly after reaching the leaf node

Three problems:
- How to split?
- When to stop?
- How to predict?
How to split?

Measure the quality of potential splits based on some criterion

Regression: Purity Split on node \((x^{(i)}, v)\), create \(D, D_L, D_R\) (parent / left child/ right child dataset)

\[
|D| \cdot \text{Var}(D) - (|D_L| \cdot \text{Var}(D_L) + |D_R| \cdot \text{Var}(D_R))
\]

Classification: Information Gain \(\text{IG}(Y|X)\)

How much information about \(Y\) is contained in \(X\).

\[
\text{IG}(Y|X) = H(Y) - H(Y|X)
\]

Entropy \(H(x) = - \sum_{j=1}^{n} p_j \log p_j\)

Conditional entropy
\[
H(Y|X) = \sum_{j=1}^{n} P(X = v_j) H(Y|X = v_j)
\]
When to stop?

- When the leaf is “pure” (variance below threshold)
- When # of examples in a leaf node is too small

How to predict?

Regression
- predict average y_i of examples in the leaf
- Build linear regression model on the example points

Classification
- Predict most common y_i in the leaf
Building decision trees with MapReduce: PLANET

- Tree small (in memory), data too large to keep in memory
- Hundreds of numerical (discrete or continuous) attributes
- Target variable is numerical (i.e. regression)

Build the decision tree one level at a time

Master Node
Keeps track of the model and decides how to grow the tree

MapReduce
Do the actual work on data
3 Types of MapReduce jobs:

- **Initialization** (run once first)
 - Find candidate splits *(node n, attribute \(X^{(j)}\), value v)*
 - Ideally divide data into similar-sized buckets
- **FindBestSplit** (run multiple times)
 - For a split node \(j\) find \(X^{(j)}\) and v that maximizes purity
- **InMemoryBuild** (run once last)
 - If there is little data entering a tree node, Master runs an InMemoryBuild MapReduce job to grow the entire subtree below that node, including leaves
Learning Ensembles

Bagging

• Learn **multiple trees**, each using an independently sampled subset of the training data (sampled with replacement)
• Predictions from all trees are aggregated (e.g. majority vote, average) to compute the final model prediction

Improvement: Random Forests

• At each candidate split, consider only a random subset of all available features
• Avoids cases where all trees select the same few strong features (Breaks correlation between different decision trees)
• Achieves state-of-the-art results in many classification problems
SVM

Given training data
\((x_1, y_1) \ldots (x_n, y_n)\)

\(x: d\)-dimensional, real valued

\(x_i = (x_i^{(1)}, x_i^{(2)}, \ldots, x_i^{(d)})\)

\(y_i = -1\ or\ +1\)

\(A, B, C: \text{support vectors},\) uniquely define the decision boundary

Margin \(\gamma: \text{distance of closest example from the decision line (hyperplane)}\)

Goal: \textit{maximize margin }\(\gamma,\) find separating hyperplane with the largest distance possible from both positive / negative point
From maximize γ to minimize $\frac{1}{2}||w||^2$

A lying on support plane

Goal: **Maximize distance** $||AH||$

$$MA \cdot w = ||w|| \times ||AM|| \times \cos \theta$$

$$w \cdot A + b = \gamma$$

$$w \cdot M + b = 0$$

$$||AH|| = ||AM|| \times \cos \theta$$

$$= \frac{|AM \cdot w|}{||w||}$$

$$= \frac{|(A - M) \cdot w|}{||w||}$$

$$= \frac{|A \cdot w - M \cdot w|}{||w||}$$

$$= \frac{|(\gamma - b) - (-b)|}{||w||}$$

$$= \frac{\gamma}{||w||}$$

- **Distance from A to H:** γ measured in $||w||$
- Scale γ and $||w||$ both by 2, nothing changes, thus we can either
 - **Normalize** w, i.e. $||w|| = 1$, maximize $\gamma \iff$
 - **Fix** margin $\gamma = 1$, minimize length of w
- We use the second way
Optimization problem formalized
fix margin \(\gamma = 1 \), minimize length of \(w \)

\[
\min_w \frac{1}{2} \| w \|^2
\]

s.t. \(\forall i, y_i(w \cdot x_i + b) \geq 1 \)

In real world, data is often not linear separable - Introduce penalty

\[
\arg \min_{w,b} \frac{1}{2} w \cdot w + C \cdot \sum_{i=1}^{n} \max\{0,1 - y_i(w \cdot x_i + b)\}
\]

Margin
Regularization hyperparameter
Empirical loss \(L \) (how well we fit training data)
Penalize mis-predicted points AND correctly predicted points that fall within the margin
Cost Function

\[
J(w, b) = \frac{1}{2} \sum_{j=1}^{d} (w^{(j)})^2 + C \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i \left(\sum_{j=1}^{d} w^{(j)} x_i^{(j)} + b \right) \right\}
\]

Minimizing cost function J

- Batch Gradient Descent
- Stochastic Gradient Descent
- Mini-batch Gradient Descent

\[
\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta; x^{(i)}; y^{(i)}).
\]
Large-scale machine learning

Summary

• **Decision Tree**
 • Classification or Regression
 • Numerical or categorical features, usually dense
 • Complicated decision boundaries

• **Support Vector Machine (SVM)**
 • Classification (usually $y = \pm 1$)
 • High-dimensional, sparse feature space
 • Simple, linear decision boundary
Streaming Algorithms

Wensi Yin
Bloom filters - Problem

• You have a stream of ads. How to make sure a user doesn’t see the same ad multiple times?
• Naïve approach: store the ads in a hash table.
 • This takes $O(\# \text{ ads})$ space!
• What if we want to use at most 100 slots of memory?
 • We can not have a deterministic answer, but we can answer it with high prob!
Bloom filters - Construction

• What if we want to use at most 100 slots of memory?
• Create a bit array B of size 100, initialized to all 0’s
• Create a hash function that hashes ads to 100 different possible buckets
• When an ad is seen, hash the ad to a bucket (say, bucket 79), and set B[79] = 1
Bloom filters - Test

• How to check whether a new incoming ad has been seen?
• Suppose the ad hashes to bucket 89
• If B[89] = 0, you know the ad has NOT been seen
• If B[89] = 1, the ad might have been seen, but we also might have seen a different ad that happened to hash to the same bucket.

• **Prob false positive**: \(1 - \left(1 - \frac{1}{100}\right)^m \), \((m: \# \text{ distinct ads seen so far})\)
• K number of hash functions: check if all of the k bits corresponding to the hash functions are set to 1.

• **Reasonable number** of hash functions will help **reduce false positive prob.**
Flajolet-Martin Algorithm

• Problem: a data stream consists of elements chosen from a set of size \(n \). Maintain a **count of the number of distinct elements** seen so far.

• Pick a hash function \(h \) that element in set to \(\log_2 n \) bits.

• For each stream element \(a \), let \(r(a) \) be the number of trailing 0’s in \(h(a) \).
 • Record \(R = \) the maximum \(r(a) \) seen for any \(a \) in the stream.
 • Also known as the “tail length”

• Estimate of distinct elements = \(2^R \).

• Intuitively, seeing \(r \) trailing 0s is “unusual” (prob \(1/(2^r) \))
 • More distinct elements leads to a higher chance of seeing this “unusual” event

• If we notice this “unusual” event, our estimate should be correspondingly higher
AMS method

• Problem: Suppose a stream has elements chosen from a set of n values. Let m_i be the number of times value i occurs. **Estimate the k-th moment** which is the sum of m_i^k over all i.
 • 0^{th} moment = number of distinct elements in the stream.
 • 1^{st} moment = sum of counts of the numbers of elements = length of the stream.
 • 2^{nd} moment = measure of how uneven the distribution is.

• Algorithm for 2^{nd} moment:
 • Assume stream seen so far has n elements
 • Pick a random starting and let the chosen time have element a in the stream.
 • Let $X =$ # times a is seen in the stream from that point onward
 • Estimate of 2^{nd} moment = $n(2X -1)$

• Application:
 • 2^{nd} moment can be used to estimate self-join size in database.
Computational Advertising

Stefanie
Advertising: Bipartite Matching

M = \{(1,a),(2,b),(3,d)\} is a matching
Cardinality of matching = |M| = 3
Advertising: Online Algorithms and Competitive Ratio

• Question: How to find a maximum matching for a given bipartite graph
• Polynomial offline algorithm exists, but what’s the best we can do in online setting?

\[
\text{Competitive ratio} = \min_{\text{all possible inputs } I} (\frac{|M_{\text{greedy}}|}{|M_{\text{opt}}|})
\]

(greedy’s worst performance over all possible inputs I)

• In maximization problem, competitive ratio \(\leq 1\)
• In minimization problem, competitive ratio \(\geq 1\)

• **Greedy bipartite matching algorithm:** competitive ratio = \(1/2\).
 • Easy to find examples, proofs are more difficult
Advertising: Adwords and Click Through Rate

- Adwords problem is example of online algorithm

 Instead of sorting advertisers by bid, sort by expected revenue

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Bid</th>
<th>CTR</th>
<th>Bid * CTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>$0.75</td>
<td>2%</td>
<td>1.5 cents</td>
</tr>
<tr>
<td>C</td>
<td>$0.50</td>
<td>2.5%</td>
<td>1.125 cents</td>
</tr>
<tr>
<td>A</td>
<td>$1.00</td>
<td>1%</td>
<td>1 cent</td>
</tr>
</tbody>
</table>

Challenges:
- CTR of an ad is unknown
- Advertisers have limited budgets and bid on multiple queries
Advertising: Greedy vs BALANCE Algorithm

• Simplified setting:
 • There is 1 ad shown for each query
 • All advertisers have the same budget B
 • All ads are equally likely to be clicked
 • Value of each ad is the same ($=1$)

• Greedy Algorithm: Pick any advertiser who has a bid for query
 • Competitive ratio is $1/2$.

• BALANCE Algorithm: Pick advertiser with largest unspent budget
 • Competitive ratio is $(1-1/e) = 0.63$
 • No online algorithm can do better!
Advertising: 2 Case Analysis

We claim \(x < \frac{B}{2} \)

\(\Rightarrow \) Competitive Ratio = \(\frac{3}{4} \).
Advertising: Generalized BALANCE Algorithm

• Generalized Scenario:
 • Arbitrary bids and arbitrary budgets
• BALANCE algorithm has arbitrary bad competitive ratio
 • competitive ratio -> 0
• **Generalized BALANCE**: consider query q, bidder i
 • Bid = x_i
 • Budget = b_i
 • Amount spent so far = m_i
 • Fraction of budget left over $f_i = 1 - m_i/b_i$
 • Define $\psi_i(q) = x_i(1 - e^{-f_i})$
• Allocate query q to bidder i with largest value of $\psi_i(q)$
• Same competitive ratio $(1 - 1/e) = 0.63$
Learning Through Experimentation

Baige(Alice) Liu
Learning Through Experimentation

• Take action, get reward, learn from that reward.
• Approach: formalize as a Multiarmed Bandits. Take action = pull an arm.
Multiarmed Bandits

- K-armed bandit: $|action| = K$.
- Each arm a wins (reward = 1) with fixed (unknown) probability μ_a, and loses (reward = 0) with fixed (unknown) probability $1 - \mu_a$.
- Want to maximize total reward, but need information about (unknown) μ_a.
- Every time we pull a, we learn a bit about a, so we can estimate μ_a (denoted as $\hat{\mu}_a$).
Bandit Algorithm: Greedy and Epsilon-Greedy

• Tradeoff between exploration and exploitation.
• Exploration: pull arm haven’t tried before. Exploitation: pull arm with current highest μ_a.
• Greedy algorithm takes action with highest average reward based on samples seen so far (μ_a). But it does not explore sufficiently.
• Epsilon-Greedy takes a random a with a decaying probability $\varepsilon_t \left(O\left(\frac{1}{t}\right) \right)$, and it takes the same action that Greedy would take with probability $1 - \varepsilon_t$. During exploration time, it selects random a equally likely, which is suboptimal.
Bandit Algorithm: UCB_1

- Balances exploration and exploitation by taking confidence into consideration.
- A confidence interval is a range of values within which we are sure the mean lies with a certain probability.
- Let m_a = number of times a is pulled, δ = given confidence level.
- Then, confidence interval $b = \max(\mu_a | \delta) - \min(\mu_a | \delta) = 2 \sqrt{\frac{2 \ln T}{m_a}}$.
- $UCB(a) = \bar{\mu}_a + \alpha \sqrt{\frac{2 \ln T}{m_a}}$.
Bandit Algorithm: UCB_1

• The accuracy of $\hat{\mu}_a$ is dependent on how many times we have tried a: trying a too few times means our estimate of μ_a could be very off from the true value μ_a, which means it has a large confidence interval. This interval shrinks as we try a more often.

• Strategy: try arm a with the highest upper bound on its confidence interval, i.e., action as good as possible given the available evidence. It is called an optimistic policy.

• $UCB(a) = \hat{\mu}_a + \alpha \sqrt{\frac{2 \ln T}{m_a}}$.