
Animation Curves and Splines 1

Animation Homework

• Set up a simple avatar

• E.g. cube/sphere (or square/circle if 2D)

• Specify some key frames (positions/orientations)

• Associate a time with each key frame

• Create smooth animations for the avatar movement

• does it pass through or just near the key frames and

positions?

• Save the canned animations for later use

• Provide a couple of examples

• A crawling bug, a bouncing ball, etc…

• Use unity…

Smooth Animation

• Suppose the user pushes down on a button, and holds it

down, intending for their avatar to carry out some motion.

E.g. move forward, backward, turn, etc.

• Should the avatar be allowed to turn on a dime? Should it

be allowed to instantly accelerate to full speed? Should it

be allowed to instantly go from full speed to full stop?

• Jerky motion can be rather annoying to the user, and even

cause headaches (V.R. is making things even worse)

• Having the right physical feel to the motion helps both

immersive-ness and believability (suspension of disbelief)

• E.g. it’s more realistic for a car in a racing game to take a

wider turn if going too fast, or even spin-out if the user tries

to take too tight of a turn at too high of a speed

Smooth Animation

• On the other hand, “hard core” users may prefer complete

control over their avatars

• smoothing of animations can be perceived as input delays

• However, even if the user is given tight instantaneous

control over their avatar, it is typically desirable to smooth

out the camera motion in order to avoid jerkiness of the

entire screen

• especially if the camera is attached in some way to the

unrealistically animated avatar

• It is also desirable to smooth out the motion of all the non-

player avatars the player interacts with so that they have a

more pleasing appearance

• One will also want smooth walk, run, and other motion

cycles for the avatar as it carries out its actions

Keyframing

Keyframing

• Keyframing is a method of animating an object by defining

starting and ending points of a smooth transition

• These starting and ending points of transitions are key

frames

• A sequence of key frames defines what movement the

viewer will see
𝐩𝟏

𝐩𝟐

𝐩𝟑

• We need enough frames between key frames to give the

viewer the illusion of continuous movement

• The frames between key frames are interpolated from key

frames

Path Interpolation

𝐩 𝑡 =෍𝑊𝑖(𝑡)𝐩𝒊
𝐩𝟏

𝐩𝟐

𝐩𝟑

Path Interpolation

• Interpolation is not foolproof. There may be overshoots,

undershoots or other side effects. The animator should be

careful choosing interpolation methods

• The figure shows a reasonable way of using interpolation to

obtain a smooth path connecting key frames

• But this would be an unrealistic path for a bouncing ball

𝐩𝟏

𝐩𝟐

𝐩𝟑

Temporal Parameterization

• Changing the way of parameterizing the curve as a

function of time changes the object’s motion between key

frames

• The figure below shows a plausible path for a bouncing

ball, but does not shows a plausible motion

.5

.75

1

t=

0

.25

Temporal Parameterization

• Changing the parameterization of the curve as a function

of time makes the motion more realistic

• The ball accelerates as it falls

0
.25
.5

.75

1

t=

Both Space and Time…

• Spatial curves determine the path for the motion

• Temporal parameterization along that path determines

how fast the object moves

Temporal Parameterization

• First, parameterize the 3D curved path with respect to arc length

s to obtain a function p(s)

• Then create a graph relating arc length s versus time t to specify

how fast the object moves along the curved path through space

• Plug s(t) into p(s) to get p(t)

• Adjusting the temporal curve s(t) controls how fast the object

moves along the path p(s) without changing the path

s

t t

s

Animation Curves

Animation Curves

• Artists use animation curves to parameterize spatial

positions as a function of time

• For a 3D motion, each of x, y, z coordinates can have its

own animation curve

• Artist workflow:

• Manipulate key points (blue dots)

• Set tangent directions and lengths (arrows) at key points

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
o

si
ti
o

n

Time

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
o

si
ti
o

n

Time

Animation Curves

• Artists use animation curves to parameterize spatial

positions as a function of time

• For a 3D motion, each of x, y, z coordinates can have its

own animation curve

• Artist workflow:

• Manipulate key points (blue dots)

• Set tangent directions and lengths (arrows) at key points

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
o

si
ti
o

n

Time

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
o

si
ti
o

n

Time

Wait a

minute,

arrows?

Let’s go watch an artist first…

Question #1

LONG FORM:

• Summarize how one would go about animating a bouncing

block using an animation system. What are the important

considerations?

• List 5 ideas you have for potential aspects of your game (One

sentence for each idea).

SHORT FORM

• Form clusters (of about size 5-ish?) with at least one experienced

gamer in each cluster.

• Get advice on what sorts of games might be good/feasible/etc.

from the experienced gamer ---> name/email too ;)

• Write down the best piece of advice you heard.

Animation Curves

• Artists use animation curves to parameterize spatial

positions as a function of time

• For a 3D motion, each of x, y, z coordinates can have its

own animation curve

• Artist workflow:

• Manipulate key points (blue dots)

• Set tangent directions and lengths (arrows) at key points

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
o

si
ti
o

n

Time

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
o

si
ti
o

n

Time

Wait a

minute,

arrows?

Curves & Splines

Goal: Interpolate Values

Nearest Neighbor Interpolation

Problem: not continuous

Linear Interpolation

Problem: derivative not continuous

Smooth Interpolation?

Polynomial Interpolation

of constraints = 3

polynomial degree = 2

Polynomial Interpolation

of constraints = 4

polynomial degree = 3

Polynomial Interpolation

of constraints = 5

polynomial degree = 4

Higher Order Polynomials

of constraints = 5

polynomial degree = 4

• Curve may oscillate unexpectedly

Overconstrained / Least-Squares

of constraints = 5

polynomial degree = 2

• Curve does not interpolate points

• Instead it approximates the points

Multiple Lower Order Polynomials

two 4-point interpolations

two degree 3 polynomials

• Curves don’t agree in region of overlap

Piecewise Polynomial Interpolation

Different curves in each interval

Match values and slopes at endpoints

Cubic Hermite Interpolation

Given: values and derivatives at 2 points

• 4 constraints → need 4 degrees of freedom

• use a degree 3 cubic polynomial

𝑓(0)

𝑓′(0)

𝑓(1)

𝑓′(1)

￭ Cubic polynomial

𝑓 𝑡 = 𝑎𝑡3 + 𝑏𝑡2 + 𝑐𝑡 + 𝑑

𝑓′ 𝑡 = 3𝑎𝑡2 + 2𝑏𝑡 + 𝑐

￭ Solve for coefficients:

𝑓 0 = ℎ0 = 𝑑

𝑓 1 = ℎ1 = 𝑎 + 𝑏 + 𝑐 + 𝑑

𝑓′ 0 = ℎ2 = 𝑐

𝑓′ 1 = ℎ3 = 3𝑎 + 2𝑏 + 𝑐

Cubic Hermite Interpolation

Matrix Representation

Solve for a, b, c, d

Inverse Matrix

C0 Continuity for Hermite Splines

• Points are specified continuously

• But derivatives are specified discontinuously

𝒇(𝟎)

𝒇(𝟏)

𝒇(𝟐)

𝒇(𝟑)

𝒇

𝒕

C1 Continuity for Hermite Splines

• Derivatives are specified continuously as well

𝒇(𝟎)

𝒇′(𝟎)

𝒇(𝟏) 𝒇′(𝟏)

𝒇′(𝟐)

𝒇′(𝟑)

𝒇(𝟐)

𝒇(𝟑)

𝒇

𝒕

Basis Functions

Hermite Basis Functions?

𝑓 𝑡 =෍

𝑖=0

3

ℎ𝑖𝐻𝑖(𝑡)

monomial basis Hermite basis

Insert Identity Matrix

identity

Hermite Basis

Hermite Basis Functions

No need for inverse/solve, just add together splines: ෍
𝑖=0

3

ℎ𝑖𝐻𝑖(𝑡)

2D/3D Interpolation

• Draw a line between each pair of points

• Consider linear interpolation between points 𝐩𝟎 = 𝑥0, 𝑦0 and

𝐩𝟏 = 𝑥1, 𝑦1 :

Piecewise Linear 2D Interpolation

𝐩(𝑡) = 1 − 𝑡 𝐩0 + 𝑡𝐩1

or

𝑥(𝑡) = 1 − 𝑡 𝑥0 + 𝑡𝑥1
𝑦 𝑡 = 1 − 𝑡 𝑦0 + 𝑡𝑦1

𝐩𝟎

𝒗𝟎

𝐩𝟏

𝒗𝟏

2D/3D Hermite Curves

• Given two points 𝐩0 = (𝑥 0 , y(0)) and 𝐩1 = (𝑥 1 , y(1))

• To apply cubic Hermite interpolation to each component, we also need

derivative constraints: 𝑥′(0), 𝑦′(0), 𝑥′(1), 𝑦′(1)

• (𝑥′ 0 , y′(0)) is the (un-normalized) direction of the tangent at 𝐩0

• Different magnitudes of (𝑥′, 𝑦′) at end points lead to different Hermite splines!

𝑣0 = (𝑥′ 0 , 𝑦′ 0)

𝑣1 = (𝑥′(1), 𝑦′(1))

𝐩𝟎

𝒗𝟎

𝐩𝟏

𝒗𝟏

2D/3D Hermite Curves

• Given two points 𝐩0 = (𝑥 0 , y(0)) and 𝐩1 = (𝑥 1 , y(1))

• To apply cubic Hermite interpolation to each component, we also need

derivative constraints: 𝑥′(0), 𝑦′(0), 𝑥′(1), 𝑦′(1)

• (𝑥′ 0 , y′(0)) is the (un-normalized) direction of the tangent at 𝐩0

• Different magnitudes of (𝑥′, 𝑦′) at end points lead to different Hermite splines!

𝑣0 = (𝑥′ 0 , 𝑦′ 0)

𝑣1 = (𝑥′(1), 𝑦′(1))

Arrows!

Basis Functions for 2D/3D Curves

• Consider interpolation between points 𝐩𝑖= 𝑥𝑖 , 𝑦𝑖 for 𝑖 = 0,1, … , 𝑛.

• Each component of 𝐩(𝑡) is independently interpolated via:

𝑥 𝑡 =෍

𝑖=0

𝑛

𝑥𝑖𝑊𝑖(𝑡) 𝑦 𝑡 =෍

𝑖=0

𝑛

𝑦𝑖𝑊𝑖(𝑡)

• Since the basis functions are the same for every component, we

get:

𝐩 𝑡 =෍

𝑖=0

𝑛

𝐩𝑖𝑊𝑖(𝑡)

𝐩𝟎

𝒗𝟎

𝐩𝟏

𝒗𝟏

2D/3D Hermite Curves

• Cubic Hermite interpolation for each component

𝑥 𝑡 = 𝐻0 𝑡 𝑥(0) + 𝐻1 𝑡 𝑥(1) + 𝐻2 𝑡 𝑥′(0) + 𝐻3 𝑡 𝑥′(1)

𝑦 𝑡 = 𝐻0 𝑡 𝑦(0) + 𝐻1 𝑡 𝑦(1) + 𝐻2 𝑡 𝑦′(0) + 𝐻3 𝑡 𝑦′(1)

• Assemble the equations of each component to get the 2D

interpolation equation

𝐩 𝑡 = 𝐻0 𝑡 𝐩0 + 𝐻1 𝑡 𝐩1 + 𝐻2 𝑡 𝒗0 +𝐻3 𝑡 𝒗1

• Points are specified continuously

• But tangents are specified discontinuously

C0 Continuity for 2D/3D Hermite Curves

C1 Continuity for 2D/3D Hermite Curves

• Tangents are specified continuously as well

Catmull-Rom

Catmull-Rom (for 1D Hermite) Interpolation

Automatically define derivatives as central differences

𝑡1𝑡0 𝑡2 𝑡3

𝑓 𝑡2 − 𝑓 𝑡0
𝑡2 − 𝑡0

𝑓 𝑡3 − 𝑓 𝑡1
𝑡3 − 𝑡1

Catmull-Rom (for 1D Hermite) Interpolation

Then use Hermite Interpolation

𝑡1𝑡0 𝑡2 𝑡3

𝑓 𝑡2 − 𝑓 𝑡0
𝑡2 − 𝑡0 𝑓 𝑡3 − 𝑓 𝑡1

𝑡3 − 𝑡1

Catmull-Rom (for 2D/3D Hermite)
Interpolation

• We can define the derivatives with respect to a paramater 𝒕 for

each component using central difference

• But how do we choose 𝒕 ?

𝒗𝟎 =
𝐩𝟐 − 𝐩𝟎
𝑡2 − 𝑡0

𝐩𝟐

𝐩𝟏

𝒗𝟏 =
𝐩𝟑 − 𝐩𝟏
𝑡3 − 𝑡1

𝐩𝟑

𝐩𝟎

Catmull-Rom (for 2D/3D Hermite)
Interpolation

𝒗𝟎 =
𝟏

𝟐
(𝐩𝟐 − 𝐩𝟎) 𝒗𝟏 =

𝟏

𝟐
(𝐩𝟑 − 𝐩𝟏)

𝐩𝟑

𝐩𝟐

𝐩𝟏

𝐩𝟎

• Common to just set the spacing between points to be 𝟏,

then 𝒕𝒌+𝟏 − 𝒕𝒌−𝟏 = 𝟐

