Animation Curves and Splines 2




Animation Homework

Set v '

avatar
* E.g. cbe/ o s ir

s
Specify some key Framestoﬁng:amoy

Associgte a time with each key frame g
Crea

SAnmmatian.

positions?
Save the ca aninghtidhstoe later,
Provide a &of ;Ulh i ty
* A crawling bug, a bouncing ball, etc...

Use unity...




‘Bezier Curves




Bezier Curves

* Specify control points instead of derivatives




Bezier Curves

« A Bezier curve is defined by a set of control points
Py, ..., P, where n determines the order of a Bezier
curve

« Start from a linear Bezier curve based on two control
points, and build recursively

« A linear Bezier curve is a straight line

oP,

PP(,,P1 (1) =1-0)P, +P,

f

0 oP,



Bezier Curves

« A quadratic Bezier curve is determined by 3 control
points P,, P, P,

PO PP, ()=>1-0)P P,.P, (1) +1P P,.P, (7)

* Pp,p, p,(t) is linearly
interpolated on the green
line, and the endpoints of
the green line lie on linear
Bezier curves determined
by Py, P, and Py, P, P, =0 oP,
respectively

 The basis functions are quadratic functions

(£)=(1—1)*P, +2t(1-1)P, +£°P,

o P,

PO PP,



Bezier Curves

A cubic Bezier curve is determined by 4 control
points

Po ppp()=U-0P, p p (1) +1Pp p p (?)

* Pp,p, p,p,(t) is linearly
interpolated on the blue
line, and the path of the two
end points of the blue line
are quadratic Bezier curves
determined by P,, P, P, and
P,, P,, P; respectively

el

—
0

=0

[ e
.y
o

« The basis functions are cubic functions

P, » pp ()=(1—2)"P +3t(1-1)"P, +3t"(1-1)P,

oP,



Bezier Curves
Higher order Bezier curves are defined recursively

...........

The basis functions of an nt! order Bezier curve are nt! order
polynomials

PPO,PI,...,PH () = Z Bin (t)Pi
i=0

(n) |
where B '(¢t)=| |t'(1-1)""
\ )

High order Bezier curves are 1 °P,

more expensive to evaluate

When a complex shape is
heeded, low order Bezier

curves (usually cubic) are
connected together

PO =0 0P3

oP,



Connecting Cubic Bezier Curves

® Want velocity to be continuous

® Need co-linear control points across the junctions

P

P,




CO Continuity for Bezier Curves

« Points are specified continuously
« But tangents are specified discontinuously



C1 Continuity for Bezier Curves

« Tangents are specified continuously as well



~ Rotations




Rotation Interpolation

Besides translation, the motion of a rigid object also includes
rotation

Consider an axis of rotation (out of the page) and angles of
rotation a with respect to that axis

Ry R
S RGP,

Would like the object to smoothly change from one
orientation to the other




Rotation Interpolation

e e\
SRR

Linear interpolation of Angles: a(t) = (1 — t)ay + ta,

®* Need to be mindful of angle limits
® Not necessarily the shortest path
* Suppose we interpolate from a, = 1° to a; = 359°

® This rotates almost a full circle, although the two angles
are nearly the same



Recall: 2D Rotation Matrix

The columns of the matrix are the new locations of the x and y axes

Mo Mee Mgy 1 My Mzz May 0
- My - My Myy | | 0 ] - My Myz Myy 1

So set the columns to the desired new locations of the x and y
axes

. . cosf@ —sinf |
Rotation matrix =

(_ sin 0, cos 9) Y sinf cos@

\

N

(cos 8, sin 0)

\

*

N 0 3D is similar...



Euler Angles

® Euler angles:
® from the original axes (xyz)
® «: a rotation around the z-axis (x'y'z")

® B: a rotation around the N-axis (x"y"z")

® vy: a rotation around the Z-axis (XY Z)

* Three angles are applied in this fixed
sequence

® N-axis and Z-axis are both moving axes

®* Interpolate rotation using Euler angles

®* Could parameterize each of the angles:

aft), B(t), v(t)



Euler Angles

® Euler angles can lead to artifacts: gimbal lock




Question #1

LONG FORM:

« Summarize how Euler Angles work, and explain gimbal
lock.

« List 5 things you plan to do research on in order to learn

more about designing your game (One sentence for each
idea).

SHORT FORM

* Form clusters (of about size 5-ish?) with at least one
novice gamer in each cluster.

« Take turns answering questions that person might have,
and otherwise giving him/her advice.

« Write down the best piece of advice you heard.




" Quaternions




Quaternions

® Quaternions are an extension of complex numbers
g=s+Xxi+)y+zk
® The conjugate of a quaternion is defined as

g =s—xi—yj—zk

*They are added and subtracted (term by term) as usual.

* Multiplication is defined as

follows: (using the table) x 17§ j k
4,9, = (88, =X, X, = WV, —Z,Z,, 1(1|il| ]|k
$1X, T X8, TV Z, —Z1 ), i i -1 k|
$1V, = X2y, T VS, T Z1X,, jojl-kl-1 i

$1Z, + XV, — VX, +2,5,) k k | |-i -1



Unit Quaternions as Rotations

* A guaternion can be expressed as a scalar/vector pair:
qg=(s,v) where vV=(x1y,2)

* A unit (length) quaternion can be obtained by dividing
through all the elements by: 4] =P+ x4y + 2

® Each unit quaternion corresponds to a rotation

® For a rotation around a 3D axis 72 of angle @, the corresponding
unit quaternion is

6 . 0.
COS—.,SIn — 7
( > 5 )

® A quaternion multiplied by a nonzero scalar still corresponds to the
same rotation (since normalization removes the scalar)



Unit Quaternions as Rotations

® A unit quaternion (s, x, y,z) is equivalent a rotation

trix:
marmx /1—2y2 2z 2xy —12sz 2xz+ 28y A

2xy+2sz  1-2x" =2z  2yz—2sx

L 2xz =28y 2sx+2yz 1—2x2—2y2)

®* Rotating a vector by a unit quaternion is faster than using
a rotation matrix (a vector can be viewed as a non-unit
quaternion with the scalar part set equal to zero)

Rotate(ud) = quqg™?
*The inverse of a unit quaternion is simply its conjugate g*

*( The inverse of a non-unit quaternion is g~ = q*/l|ql|* )



Interpolating Unit Quaternions

® Unit quaternions can be viewed as points lying on a 4-D
unit sphere: (s,Xx,V,2)

®* Interpolating between these points means tracing out a
curve on the surface of this 4-D sphere

® This framework allows us to take the shortest path as
represented by an arc on the 4D sphere

B

Longest
Shortest

Quaternions —
Origin of Quaternion sphere Note: The 3D unit

sphere is for
& illustrating the
A - Orientation before rotation idea- The unit

B - Orientation after rotation ~ quaternion sphere
is 4D!

Quaternion rotation interpolation



SLERP

® Spherical Linear Interpolation

®* Linearly interpolate between points ¢, and g, on the unit sphere:
q(t)

sin(1 —¢ Sin ¢
gy =209, S0P
SIn @ SIn @ 1

- According to L'HOpital's rule,

SIN @

lim S22 _ i SR _ i LCOS1P
»>0 sing 920 (sin@)"  #20 coSs@
i sin(l—1)p —im (sin(1—1)p) —1im (1-2)cos(1-1)p 1

»=>0  SIn @ »-0  (sin @)’ p—0 COS @

Therefore, as @ goes to zero, we get linear
interpolation

q(t)=(-1)q, +1q,




Angle Between Unit Quaternions

®* The angle ¢ between two unit quaternions on a 4D sphere
is calculated using:

¢ = arccos(qo * q1)
with a typical dot-product: q, - q; = sps; + x0x1 + VoV1 + Zp24
®* ¢ is guaranteed to be between [0, 7]

* However, it still does not guarantee the shortest path,
because g and —q correspond to the same rotation!

®* So, if q, - q, is negative, we negate either g, or q; before
applying SLERP to guarantee the shortest path



SLERP for Unit Quaternions

* A quaternion q = (s, 7) can be defined in exponential form
q = llqlle™ = ||q|| (cosa + # sina)

where a and the unit vector #i are defined via:
s = |lqll cos a, v =1||[Y|| = llqllfisina

® fiis the rotation axis, and a equals half of the rotation angle
® The power of a quaternion is then: gt = ||g||te™*

* Note that the power affects the rotation angle «, but not the
rotation axis 1

® Finally, SLERP for unit quaternions is expressed as:
SLERP(qo,q1;t) = qo(q0"'q1) ¢



Question #2

LONG FORM:

« Briefly explain why we use quaternions for rotations.

« Explain why moving rigid bodies use both a linear and an
angular velocities.

« Answer the Short Form questions as well...

SHORT FORM

« Can you think of a particularly visually interesting rigid
body used in games, movies, or television?

« Very briefly describe it.

« Explain how it makes use of translations and/or rotations
for visual effects.



