

Simulation Homework

 Build a particle system based either on F=ma or
procedural simulation

— Examples: Smoke, Fire, Water, Wind, Leaves, Cloth,
Magnets, Flocks, Fish, Insects, Crowds, etc.

e Simulate a rigid body

— Examples: Angry birds, Bodies tumbling, bouncing,
moving around in a room and colliding, Explosions &
Fracture, Drop the camera, Etc...

Particle

* A particle is simply a point in space with some
attributes

 The attributes are what makes different kinds of
particles

— Mass (m)

— Position (x)

— Velocity (v)

— External Force (F)

— Color, Animal type, Etc.

Particle Motion

e Dynamic

— A particle with a non-zero initial velocity tends to keep
moving with that velocity (Newton’s 1st Law)

— Its motion changes whenever unbalanced external
forces are applied to it (Newton’s 2nd Law)

e Kinematic

— An “infinite mass” particle can move along a prescribed
path or animated curve directed by an artist

 Static — a kinematic particle with zero velocity

Newton’s Second Law

* The net force on an object is equal to the rate of
change of its linear momentum P=mv

o dP d(mv)
dt . ar @

* The last equality holds if the object has constant
mass

Newton’s Second Law

F = ma = mx

* This is a second order differential equation in
position

* Higher order differential equations can be analyzed
and solved by rewriting them as a system of first
order equations:

X =7
v=F/m

Types of Forces

A particle system that simulates water requires
gravity as an external force, as well as internal
forces for incompressibility and advection

Dust particles (or leaves) require air currents and
wind as external forces

If particles are used to model cloth, we require
elastic or spring forces between them

If each particle is fish, they need attractive forces to
school and repulsive forces to avoid collisions

Etc...

Types of forces
Constant forces (e.g. gravity)
Time dependent forces (e.g. wind)

Position dependent forces (e.g. force fields,
spatially varying wind)

Velocity dependent forces (e.g. drag, friction)

Position & Velocity dependent forces (e.g.
springs)

Gravity

* Fyray = —Myg
e g =9.8m/s?is aconstant
* m is the mass of the body/particle

* Simple ballistic motion...

Wind
* Position and time dependent force

* fwind = f(f' t)

Magnetism

e Assign the particles a magnetic
monopole attribute q

__ H1q14q3
ATTT2

— g1 and g, are magnitudes of
magnetic monopoles, r is the
distance between the poles,
and u is a constant

— Also need to add a direction
between particles

— Like poles repel and unlike poles
attract

Drag Force

* Velocity dependent force (linear in velocity)

* The faster the velocity, the larger the drag
— think molasses or honey

* fdrag — _kdrag Urel
— where kg4 is the drag coefficient, and v, is the particle’s
velocity relative to the fluid it is in

Spring Force (no damping)

e Hooke’s Law

* Fspring = —kx A

Force

* Linearization of the spring forces
for small displacements

Elongation

Compression

Spring Force (with damping)

* Fspring = —kx — kdx
* Adds an exponential decay to the
amplitude of oscillation

* Itis agood practice to add some
damping to physical systems to keep
them form going unstable

— and for realism

Question #1

LONG FORM:

* Briefly discuss various types of forces that can be
used in video game simulations

* Answer short form question below

SHORT FORM:

e Can you think of a use for forces in your video
game? Briefly explain

* (Notice I’'m starting to assume you have a video
game idea. Do you? ©)

on D

.i,

is

v

-

Collisions

* As particles move around under the influence of
gravity, drag, and other forces, how do they interact
with other objects?

* This is where collisions come into play
* How do we detect collisions?

— Check to see if a particle is inside some object

Example: Plane

Consider for example using a plane to represent the
ground (or a wall)

Define the plane by a point p and normal n

Given our particle position X, we calculate
s=(x—-p)n

X is outside the plane if s > 0 and inside if s < 0

Normal to the plane/object is given by 11

Example: Box

Use a plane for each of the six faces of the box
If the particle is inside all 6 faces, it is inside the box

To find the normal, one has to identify the closest of
the 6 planes

This is given by the value of s closest to zero

Can be used for other convex polyhedra as well

Example: Sphere

Define a sphere with a center ¢ and a radius r
Given a point g, calculate s = |g — ¢| — .
g is outside the sphereif s > 0 and inside if s < 0

Normal at the pointis (g — ¢)/|q — |

d 3 . . L
- . "
-.. -
. . » » ..
> .
B . ot
. . . .
.
" R .
- X L

u. A " ‘@
« . " - P
. L X > -
~ .
. o o
P RV Seiegihy .
o :
L 74
» LY
$° o - ' aY
. »

-
- *
P
..

es

onR

-
~
P
'i

.

Collision Response

* Do something to take the bodies from a “colliding
state” to a “non-colliding state”

 What properties should a good response algorithm
have?
— Remove interpenetrations
— Conserve linear and angular momentum

— Have the correct relative velocities based on the material
properties of the colliding bodies

— Should look plausible!

Collision Response (Notation Key)

cr is the coefficient of restitution
* 0is completely inelastic; objects stick together

* 1is completely elastic; objects bounce without losing any
kinetic energy

 Between 0 and 1 means some energy is lost due to
deformation, damage, sound, heat, etc.

m,, is the mass of the first object

m,, is the mass of the second object

U, is the velocity of the first object before impact

uy is the velocity of the second object before impact
v, is the velocity of the first object after impact

vy, is the velocity of the second object after impact

Collision Response (Formulas)

Vp — Vg - ey
Cp = — (definition)
Up — Uqg

myUu, + myu, = myv, + myv, (Momentum conservation)
 Two equations in two unknowns, solve...

¢« v = (ma Ug + Mp Up — My cR(ua—ub))
a (mg+mp)

¢ P, = (ma Ug + Mp Up — Mg CR(ub_ua))
b (mg+mp)

* We can also look at this in terms of an impulse. The impulse required
to change the velocity of object a is

J=mg(Vg — Ug)
* Anequal and opposite impulse is applied to object b

If one object is infinitely heavy...

Useful for kinematic objects (stationary or moving)
Make m,, infinite
v, = Uy (doesn’t change)

(mp up — mp Crlug—up))
Va = my, s = up — cp(Ug — Up)

If u, = 0 (stationary object, e.g. ground plane), then this
further simplifies to v, = —cru,

. 3 .
.- L : .
' -»
® = . ;

,. » ‘e s ¥
2 v =49 »
.’ -

. . =
o o =5 .
3 ..

. - - »
* o '.’ .
'3 .
DN ; . :
» . = i

» .' o ° -
s> » 2 -
SR .
. i e
;. e

ollisi

Higher Spatial Dimensions

The prior equations describe collision in 1D only

In 3D, they describe the collision in the normal
direction, i.e. on the components of velocity (dot
product-ed) into the normal direction

The tangential components of the velocity do not
change, unless there is collisional friction

Since most surfaces can be locally approximated as
being planar, let’s consider point plane collisions....

Point-Plane Collision Response

* Collision only affects the normal component of velocity
* Assuch, split the velocity into a normal and tangent

component: = <~
Vy = (V - N) N
N I7T — I7 — I7N

XN

More Collision Detection

* Need to detect that it’s colliding with the wall, and not
separating

 Make sure it is heading into the wall with: V-N<O

Vr

AN

=l

Collision Response

e Adjust the normal velocity of the particle to account for
the collision

* Leave the tangential velocity unchanged

* Probably also want to adjust the position of the particle
to move it to the surface of the object (if it is inside)

I7T _CRV)N ‘ :

—

— Vr

I_/’/

<!

Friction

Let j,, be the collision impulse in the normal direction

= 174
VT ﬂ']n' T

m|Vr|’
the coefficient of kinetic friction:

7 Hlinl) = =
Vi=max|0,|1— Ve — cpV,
((m|VT|) T RYN

The clamping ensures that friction slows a particle down
without changing its direction

Static friction can be modeled by first applying this formula
with the (typically larger) static friction coefficient

— If the max clamps to O, static friction stopped the object from
moving

— If not, then recompute the formula with the smaller kinetic
friction coefficient

The new tangential velocity is l7T where u is

Question #2

LONG FORM:
e Briefly discuss implementing collisions
* Answer short form question below

SHORT FORM:
e Can you think of a good use for collisions in your

video game? Briefly explain

Ordinary Differential Equations (ODEs)

* An ODE is an equation containing a function of
one independent variable t and its derivatives:

f&yy,y", .)=0
e First order ODE’s have at most one derivative:
ft,y,y)=0

* |f we can isolate the derivative term, we call it an
explicit ODE (otherwise its implicit):

y' = f(ty)

Well-Posed vs. IlI-Posed ODEs

 Model problem)
* linear ODE y' = Ay

— solution is y = y,e*(t=to)

— 3 kinds of solutions
e A > 0ill-posed (a) (b)
A = 0 mildly ill-posed (b)

1 < 0 well-posed (c)

* |ll-posed problems can not
(should not) be solved (with "
any reasonable assurances) on

the computer

Well-Posed vs. llI-Posed ODEs

* Scalar ODE y' = f(t,y)

. .. d . .
— Derivatives é = A must be negative (or < 0 for mild

well-posedness) for all values of t and y we are
concerned with

 Systems of ODEs y' = f(t,Vy)

-

. . . d
— All eigenvalues of the Jacobian matrix] = d—i must be

y
negative (or < 0) for all t and y we are concerned with

e Poor choices of the forces in F=ma can lead to
ill-posed problems!

-~

. 2 -
.. . - <

- 5 :) ”
- : : el . 2 ' i . V :. .

Numerical Approximation of Derivatives

y

n+1

tn tn+1

yl ~ (n+1 __ n)/(tn+1 tn)
or

y' = (" —y™)/At
where At = t"*1 — ¢

Time discretization

" =y™/At = F("y™)
or.. y"tl=9ym 4 At f(",y™)

This method is called Forward Euler

Start at some initial time t° with initial value y°

Recursively compute the values for the next time
step using the values from the current time step

At can be either fixed or adaptively varied for better
accuracy and stability

Example

Forward Euleron y'=—yfor y'=1,t0=0
At =5 1s stable

14
0.8 }
0.6 }
0.4 +

0.2 +

o]

0 05 1 15 2 25 3

Ar =3 1s unstable

1\/34 5 6 8 9
14
21

Forward Euler: Stability

Consider model equation y' = Ay with A < 0

— Recall the analytic solution is exponential decay: y(t) =
yoe/l(t—to)

Forward Euler’s method applied to the model
equation is y*t1 = y™ + Atdy™ = (1 + Atd)y™
Soy™ = (1 + AtA)™y?, and the solution decays
when |1 + AtA] < 1

Thus, —2 < AtA < 0 is needed for stability
— We have AtA < 0 trivially, since 4 < 0

Time step restrictionis At < 2/|A]

Forward Euler: Accuracy

0 (At?) error in each time step (shown via Taylor
series)

0 (Alt) time steps to get to an O(1) final time

0(At?) x 0 (Ait) = 0(At) total error

1st order accurate

-‘.."'. ." .. ‘.- ,. .,.. i 2 .' .
Brak L LN

- . 20 TRy el T s -
3 A S . . 5 L
S . --'.. .‘.7.“ L AIG AT e o _.".
T— = it .. '..- -. ..' '.'-._'.v.l..' _ ® .

g o i = e el ele e 3
.
<

al

eri

Runge-Kutta Schemes

Runge-Kutta (R.K.) builds on Forward Euler (F.E.)

Achieves better accuracy by predicting solutions
using F.E.
— and then uses averaging to get new solutions

Different prediction and averaging schemes give rise
to different R.K. schemes

1st order (accurate) R.K. is same as F.E.

2nd Order (Accurate) Runge Kutta

Take two successive F.E. steps:

yn+1_ n n+2_,,n+1

Yy _ n .,n Y Yy _ n+1 ,n+1
—— = f({t%y") and —————=f("",y""")

Average the initial and final states:

yn+1 — %yn + %yn+2

If the solution is well behaved for each F.E. step, then since

linear interpolation is well behaved, the result is well
behaved

3rd Order (Accurate) Runge Kutta

Take two successive F.E. steps:

n+1_,,n n+2_yn+

1
Aty — f(tn’yn) and Y — —]c(tn+1’yn+1)

Average the initial and final states:

yn+1/2 — Eyn _|_1 n+2

4 4

y

Take another F.E. step:
yn+3/2 _ yn+1/2

At
1 _

Then average again: y"*! = %y" + %y

— f(tn+1/2’yn+1/2)
n+3/2

3 order R.K is not only more accurate but has some better
stability properties

EvenMo

Backward Euler

yn+1 — yn At f(tn+1’yn+1)

Equation is implicit in y™*1, so generally need to
solve a nonlinear equation to find y™*1

Newton iteration.... linearize, solve, linearize, solve,
etc.

Some applications (that allow for larger errors) only
use one linearize and solve cycle

Sometimes f is already linearin y
Accuracy — 1st order (same as forward Euler)

Backward Euler: Stability

Consider model equation y' = Ay with A < 0
Backward Euler applied to the model equation is
yn+1 — yn + At/lyn-l_l — (1 _ At/l)_lyn

Soy™ = (1 — AtA2) ™yY and the solution decays
when |1 — AtA| > 1

— Always true!
Unconditionally stable - works for all At
No time step restriction...

Backward Euler vs. Forward Euler

Backward Euler (B.E.) is unconditionally stable

— i.e. one can take very large time steps, whereas Forward
Euler (F.E.) requires smaller time steps

B.E. might excessively damp out the solution,
whereas F.E. might blow up (i.e., NaNs)

Each B.E. time step may be much harder to solve
than a F.E. time step

— B.E. is more theoretically challenging and uses more
CPU time

Not always clear which is better...

Trapezoidal Rule

f(tn, yn) + f(tn+1’y7’l+1)

yn+1 — yn + At 2

2"d order accurate

Unconditionally stable

Need to solve for y™*1 just like Backward Euler
One can take very large time steps since it is stable

Sometimes bad oscillatory behavior if At is too big

Back to our problem...

X =7V
v=F/m
* We can solve for velocity at one accuracy level
lower than for positions (a multivalue method)
* Treating it as a standard system is overkill

* E.g., standard constant acceleration equations

- - Atz - . . .
o XML = X1 4 AtU" + —-a" piecewise quadratic

position

e Ml =" 4+ Ata™ piecewise linear velocity

e a1 =qg" piecewise constant acceleration (constant
from time n to just before time n+1)

Newmark Methods

2
>n+1 _ 2n >N Ai _ - n ~“n+1
X = x" + Atv"™ + > (1 —2B)a"+26a" "]

B+l = B 4 AL [(1 — p)d" + ydan]

Most popular multi-value method in computational
mechanics

Actually a lot of methods in disguise
Different choice of f and y makes a specific method

f and y both identically O gives the standard constant
acceleration case

Newmark Methods

* Second order accurate ifand onlyify = 1/2

* Trapezoidal Rule when f = 1/4

At? (a™+a™th)
2 2

(an+an+1)

2

— Substitute the acceleration terms from the second
equation into the first, to see that the first equation is
equivalent to

XMt = ¥ + Atp™

ptl = g L At

(vn+vn+1)
2

Xt = ¥" 4+ At

A e

A Newmark Method...

§n+1/2 At ->(tn on —>n+1/2)

I\/Iodify 13"“/2 in some cases, e.g. collisions

55714‘1 — _I_ Atvn+1/2
phtl — pntl/2 4 —- *(tn+1 5c>n+1 n+1)

Modify "1 in some cases, e.g. collisions

Implicit Solve

n+1/2 n+1

Steps 1 and 4 are implicit in v and v

respectively

Typically the equations are linear in v, so we only
need to solve a single matrix system

The matrix is generally symmetric positive definite
(SPD) and we can use fast solvers such as conjugate
gradients (CG) for solving the system

Note that in the first step we are using X" instead of

fn+1/2

— The equations are typically highly nonlinear in x

Question #3

LONG FORM:
* Tell me everything about.... Nvm, have a nice day!

SHORT FORM:
c ©

