
Particles



Simulation Homework

• Build a particle system based either on F=ma or 
procedural simulation

– Examples: Smoke, Fire, Water, Wind, Leaves, Cloth, 
Magnets, Flocks, Fish, Insects, Crowds, etc.

• Simulate a rigid body 

– Examples: Angry birds, Bodies tumbling, bouncing, 
moving around in a room and colliding, Explosions & 
Fracture, Drop the camera, Etc…



Particle

• A particle is simply a point in space with some 
attributes

• The attributes are what makes different kinds of 
particles

– Mass (m)

– Position (𝑥)

– Velocity (v) 

– External Force (𝐹)

– Color, Animal type, Etc.



Particle Motion

• Dynamic

– A particle with a non-zero initial velocity tends to keep 
moving with that velocity (Newton’s 1st Law) 

– Its motion changes whenever unbalanced external 
forces are applied to it (Newton’s 2nd Law)

• Kinematic

– An “infinite mass” particle can move along a prescribed 
path or animated curve directed by an artist

• Static – a kinematic particle with zero velocity



Dynamics



Newton’s Second Law

• The net force on an object is equal to the rate of 
change of its linear momentum P=mv

𝐹 =
𝑑𝑃

𝑑𝑡
=
𝑑(𝑚𝑣)

𝑑𝑡
= 𝑚𝑎

• The last equality holds if the object has constant 
mass



Newton’s Second Law

𝐹 = 𝑚𝑎 = 𝑚 ሷ𝑥

• This is a second order differential equation in 
position

• Higher order differential equations can be analyzed 
and solved by rewriting them as a system of first 
order equations:

ሶ𝑥 = 𝑣
ሶ𝑣 = 𝐹/𝑚



Forces



Types of Forces

• A particle system that simulates water requires 
gravity as an external force, as well as internal 
forces for incompressibility and advection  

• Dust particles (or leaves) require air currents and 
wind as external forces

• If particles are used to model cloth, we require 
elastic or spring forces between them

• If each particle is fish, they need attractive forces to 
school and repulsive forces to avoid collisions

• Etc…



Types of forces

• Constant forces (e.g. gravity)

• Time dependent forces (e.g. wind) 

• Position dependent forces (e.g. force fields, 
spatially varying wind)

• Velocity dependent forces (e.g. drag, friction)

• Position & Velocity dependent forces (e.g. 
springs)



Gravity
• 𝐹𝑔𝑟𝑎𝑣 = −𝑚𝑔

• 𝑔 = 9.8 𝑚/𝑠2 is a constant

• 𝑚 is the mass of the body/particle

• Simple ballistic motion…



Wind

• Position and time dependent force

• 𝑓𝑤𝑖𝑛𝑑 = 𝑓( Ԧ𝑥, 𝑡)



Magnetism

• Assign the particles a magnetic 
monopole attribute 𝑞

• 𝑓𝑚𝑎𝑔𝑛𝑒𝑡 =
𝜇𝑞1𝑞2

4𝜋𝑟2

– 𝑞1 and 𝑞2 are magnitudes of 
magnetic monopoles, 𝑟 is the 
distance between the poles,  
and 𝜇 is a constant

– Also need to add a direction 
between particles

– Like poles repel and unlike poles 
attract



Drag Force

• Velocity dependent force (linear in velocity)

• The faster the velocity, the larger the drag
– think molasses or honey

• 𝑓𝑑𝑟𝑎𝑔 = −𝑘𝑑𝑟𝑎𝑔 𝑣𝑟𝑒𝑙
– where 𝑘𝑑𝑟𝑎𝑔 is the drag coefficient, and 𝑣𝑟𝑒𝑙 is the particle’s 

velocity relative to the fluid it is in



Spring Force (no damping)

• Hooke’s Law

• 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = −𝑘𝑥

• Linearization of the spring forces 
for small displacements



Spring Force (with damping)

• 𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = −𝑘𝑥 − 𝑘𝑑 ሶ𝑥

• Adds an exponential decay to the 
amplitude of oscillation

• It is a good practice to add some 
damping to physical systems to keep 
them form going unstable

– and for realism



Question #1

LONG FORM:
• Briefly discuss various types of forces that can be 

used in video game simulations 
• Answer short form question below

SHORT FORM:
• Can you think of a use for forces in your video 

game? Briefly explain
• (Notice I’m starting to assume you have a video 

game idea. Do you? ☺)



Collision Detection



Collisions

• As particles move around under the influence of 
gravity, drag, and other forces, how do they interact 
with other objects?

• This is where collisions come into play

• How do we detect collisions?

– Check to see if a particle is inside some object



Example: Plane

• Consider for example using a plane to represent the 
ground (or a wall)

• Define the plane by a point Ԧ𝑝 and normal  𝑛

• Given our particle position Ԧ𝑥, we calculate

s = Ԧ𝑥 − Ԧ𝑝 ⋅ 𝑛

• Ԧ𝑥 is outside the plane if 𝑠 > 0 and inside if 𝑠 < 0

• Normal to the plane/object is given by 𝑛



Example: Box

• Use a plane for each of the six faces of the box

• If the particle is inside all 6 faces, it is inside the box

• To find the normal, one has to identify the closest of 
the 6 planes

• This is given by the value of 𝑠 closest to zero

• Can be used for other convex polyhedra as well



Example: Sphere

• Define a sphere with a center Ԧ𝑐 and a radius r

• Given a point Ԧ𝑞, calculate 𝑠 = Ԧ𝑞 − Ԧ𝑐 − 𝑟.

• Ԧ𝑞 is outside the sphere if 𝑠 > 0 and inside if 𝑠 < 0

• Normal at the point is ( Ԧ𝑞 − Ԧ𝑐)/ Ԧ𝑞 − Ԧ𝑐



Collision Response



Collision Response

• Do something to take the bodies from a “colliding 
state” to a “non-colliding state”

• What properties should a good response algorithm 
have?

– Remove interpenetrations

– Conserve linear and angular momentum

– Have the correct relative velocities based on the material 
properties of the colliding bodies

– Should look plausible!



Collision Response (Notation Key)

• 𝑐𝑅 is the coefficient of restitution
• 0 is completely inelastic; objects stick together

• 1 is completely elastic; objects bounce without losing any 
kinetic energy

• Between 0 and 1 means some energy is lost due to 
deformation, damage, sound, heat, etc.

• 𝑚𝑎 is the mass of the first object

• 𝑚𝑏 is the mass of the second object

• 𝑢𝑎 is the velocity of the first object before impact

• 𝑢𝑏 is the velocity of the second object before impact

• 𝑣𝑎 is the velocity of the first object after impact

• 𝑣𝑏 is the velocity of the second object after impact



Collision Response (Formulas)

𝑐𝑅 = −
𝑣𝑏 − 𝑣𝑎
𝑢𝑏 − 𝑢𝑎

(definition)

𝑚𝑎𝑢𝑎 +𝑚𝑏𝑢𝑏 = 𝑚𝑎𝑣𝑎 +𝑚𝑏𝑣𝑏 (momentum conservation)

• Two equations in two unknowns, solve…

• 𝑣𝑎 =
𝑚𝑎 𝑢𝑎 +𝑚𝑏 𝑢𝑏 −𝑚𝑏 𝑐𝑅 𝑢𝑎−𝑢𝑏

𝑚𝑎+𝑚𝑏

• 𝑣𝑏 =
𝑚𝑎 𝑢𝑎 +𝑚𝑏 𝑢𝑏 −𝑚𝑎 𝑐𝑅 𝑢𝑏−𝑢𝑎

𝑚𝑎+𝑚𝑏

• We can also look at this in terms of an impulse. The impulse required 
to change the velocity of object a is

𝑗 = 𝑚𝑎(𝑣𝑎 − 𝑢𝑎)

• An equal and opposite impulse is applied to object b



If one object is infinitely heavy…

• Useful for kinematic objects (stationary or moving)

• Make 𝑚𝑏 infinite

• 𝑣𝑏 = 𝑢𝑏 (doesn’t change)

• 𝑣𝑎 =
𝑚𝑏 𝑢𝑏 −𝑚𝑏 𝐶𝑅 𝑢𝑎−𝑢𝑏

𝑚𝑏
= 𝑢𝑏 − 𝑐𝑅 𝑢𝑎 − 𝑢𝑏

• If 𝑢𝑏 = 0 (stationary object, e.g. ground plane), then this 
further simplifies to 𝑣𝑎 = −𝑐𝑅𝑢𝑎



Collisions in 3D



Higher Spatial Dimensions

• The prior equations describe collision in 1D only

• In 3D, they describe the collision in the normal 
direction, i.e. on the components of velocity (dot 
product-ed) into the normal direction

• The tangential components of the velocity do not 
change, unless there is collisional friction

• Since most surfaces can be locally approximated as 
being planar, let’s consider point plane collisions….



Point-Plane Collision Response

𝑉

𝑃

𝑁

𝑉𝑁 = 𝑉 ⋅ 𝑁 𝑁

𝑉𝑇 = 𝑉 − 𝑉𝑁

𝑉𝑁

𝑉𝑇

• Collision only affects the normal component of velocity

• As such, split the velocity into a normal and tangent 
component:



More Collision Detection
• Need to detect that it’s colliding with the wall, and not 

separating
• Make sure it is heading into the wall with:  𝑉 ⋅ 𝑁 < 0

𝑃

𝑁𝑉𝑁

𝑉𝑇

𝑉



Collision Response
• Adjust the normal velocity of the particle to account for 

the collision

• Leave the tangential velocity unchanged

• Probably also want to adjust the position of the particle 
to move it to the surface of the object (if it is inside)

𝑉

𝑉𝑁

𝑉𝑇

𝑉′

−𝑐𝑅𝑉𝑁

𝑉𝑇

𝑉′ = 𝑉𝑇 − 𝑐𝑅𝑉𝑁



Friction
• Let 𝑗𝑛 be the collision impulse in the normal direction

• The new tangential velocity is  𝑉𝑇
′ = 𝑉𝑇 −

𝜇 Ԧ𝑗𝑛 𝑉𝑇

𝑚 𝑉𝑇
, where 𝜇 is 

the coefficient of kinetic friction:

• The clamping ensures that friction slows a particle down 
without changing its direction

• Static friction can be modeled by first applying this formula 
with the (typically larger) static friction coefficient
– If the max clamps to 0, static friction stopped the object from 

moving

– If not, then recompute the formula with the smaller kinetic 
friction coefficient

𝑉′ = 𝑚𝑎𝑥 0, 1 −
𝜇 Ԧ𝑗𝑛
𝑚 𝑉𝑇

𝑉𝑇 − 𝑐𝑅𝑉𝑁



Question #2

LONG FORM:
• Briefly discuss implementing collisions
• Answer short form question below

SHORT FORM:
• Can you think of a good use for collisions in your

video game? Briefly explain



ODEs



Ordinary Differential Equations (ODEs)

• An ODE is an equation containing a function of  
one independent variable t and its derivatives:

𝑓 𝑡, 𝑦, 𝑦′, 𝑦′′, … = 0

• First order ODE’s have at most one derivative:

𝑓 𝑡, 𝑦, 𝑦′ = 0

• If we can isolate the derivative term, we call it an 
explicit ODE (otherwise its implicit):

𝑦′ = 𝑓(𝑡, 𝑦)



• Model problem

• linear ODE 𝑦′ = 𝜆𝑦
– solution is 𝑦 = 𝑦𝑜𝑒

𝜆(𝑡−𝑡0)

– 3 kinds of solutions 

• 𝜆 > 0 ill-posed (a)

• 𝜆 = 0 mildly ill-posed (b)

• 𝜆 < 0 well-posed (c)

• Ill-posed problems can not 
(should not) be solved (with 
any reasonable assurances) on 
the computer

Well-Posed vs. Ill-Posed ODEs

(a)

(b)

(c)



Well-Posed vs. Ill-Posed ODEs

• Scalar ODE  𝑦′ = 𝑓(𝑡, 𝑦)

– Derivatives 
𝑑𝑓

𝑑𝑦
= 𝜆 must be negative (or ≤ 0 for mild 

well-posedness) for all values of t and y we are 
concerned with

• Systems of ODEs Ԧ𝑦′ = 𝑓(𝑡, Ԧ𝑦)

– All eigenvalues of the Jacobian matrix J =
𝑑 Ԧ𝑓

𝑑𝑦
must be 

negative (or ≤ 0) for all t and Ԧ𝑦 we are concerned with

• Poor choices of the forces in F=ma can lead to        
ill-posed problems!



Numerical Methods          
for ODEs



Numerical Approximation of Derivatives

𝑦′ ≈ (𝑦𝑛+1 −𝑦𝑛)/(𝑡𝑛+1−𝑡𝑛)

or
𝑦′ ≈ (𝑦𝑛+1 −𝑦𝑛)/Δ𝑡

where Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛

𝑦𝑛

𝑦𝑛+1

𝑡𝑛 𝑡𝑛+1
x

y



Time discretization

(𝑦𝑛+1−𝑦𝑛)/Δ𝑡 = 𝑓(𝑡𝑛, 𝑦𝑛)

or…     𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡 𝑓(𝑡𝑛, 𝑦𝑛)

• This method is called Forward Euler

• Start at some initial time 𝑡0 with initial value 𝑦0

• Recursively compute the values for the next time 
step using the values from the current time step

• Δ𝑡 can be either fixed or adaptively varied for better 
accuracy and stability



Example



Forward Euler: Stability

• Consider model equation  𝑦′ = 𝜆𝑦 with 𝜆 < 0

– Recall the analytic solution is exponential decay: 𝑦 𝑡 =

𝑦𝑜𝑒
𝜆 𝑡−𝑡𝑜

• Forward Euler’s method applied to the model 
equation is 𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡𝜆𝑦𝑛 = 1 + Δ𝑡𝜆 𝑦𝑛

• So 𝑦𝑛 = 1 + Δ𝑡𝜆 𝑛𝑦0, and the solution decays 
when 1 + Δ𝑡𝜆 < 1

• Thus,  −2 < Δ𝑡𝜆 < 0 is needed for stability

– We have Δ𝑡𝜆 < 0 trivially, since 𝜆 < 0

• Time step restriction is  Δ𝑡 < 2/ 𝜆



Forward Euler: Accuracy

• 𝑂(Δ𝑡2) error in each time step (shown via Taylor 
series)

• 𝑂
1

Δ𝑡
time steps to get to an O(1) final time 

• 𝑂 Δ𝑡2 × 𝑂
1

Δ𝑡
= 𝑂(Δ𝑡) total error

• 1st order accurate



More
Numerical Methods          

for ODEs



Runge-Kutta Schemes

• Runge-Kutta (R.K.) builds on Forward Euler (F.E.)

• Achieves better accuracy by predicting solutions 
using F.E.

– and then uses averaging to get new solutions

• Different prediction and averaging schemes give rise 
to different R.K. schemes

• 1st order (accurate) R.K. is same as F.E.



2nd Order (Accurate) Runge Kutta

• Take two successive F.E. steps:

𝑦𝑛+1−𝑦𝑛

𝛥𝑡
= 𝑓(𝑡𝑛, yn) and  

𝑦𝑛+2−𝑦𝑛+1

𝛥𝑡
= 𝑓(𝑡𝑛+1, yn+1)

• Average the initial and final states:

𝑦𝑛+1 =
1

2
𝑦𝑛 +

1

2
𝑦𝑛+2

• If the solution is well behaved for each F.E. step, then since 
linear interpolation is well behaved, the result is well 
behaved



3rd Order (Accurate) Runge Kutta

• Take two successive F.E. steps:

𝑦𝑛+1−𝑦𝑛

𝛥𝑡
= 𝑓(𝑡𝑛, yn) and  

𝑦𝑛+2−yn+1

Δ𝑡
= 𝑓(𝑡𝑛+1, yn+1)

• Average the initial and final states:

𝑦𝑛+1/2 =
3

4
𝑦𝑛 +

1

4
𝑦𝑛+2

• Take another F.E. step: 

𝑦𝑛+3/2 − 𝑦𝑛+1/2

Δ𝑡
= 𝑓(𝑡𝑛+1/2, 𝑦𝑛+1/2)

• Then average again: 𝑦𝑛+1 =
1

3
𝑦𝑛 +

2

3
𝑦𝑛+3/2

• 3rd order R.K is not only more accurate but has some better 
stability properties



Even More 
Numerical Methods          

for ODEs



Backward Euler

𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡 𝑓(𝑡𝑛+1, 𝑦𝑛+1)

• Equation is implicit in 𝑦𝑛+1, so generally need to 
solve a nonlinear equation to find 𝑦𝑛+1

• Newton iteration…. linearize, solve, linearize, solve, 
etc.

• Some applications (that allow for larger errors) only 
use one linearize and solve cycle

• Sometimes 𝑓 is already linear in 𝑦

• Accuracy – 1st order (same as forward Euler)



Backward Euler: Stability

• Consider model equation  𝑦′ = 𝜆𝑦 with 𝜆 < 0

• Backward Euler applied to the model equation is
𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡𝜆𝑦𝑛+1 = 1 − Δ𝑡𝜆 −1𝑦𝑛

• So 𝑦𝑛 = 1 − Δ𝑡𝜆 −𝑛𝑦0 and the solution decays 
when 1 − Δ𝑡𝜆 > 1

– Always true!

• Unconditionally stable - works for all Δ𝑡

• No time step restriction…



Backward Euler vs. Forward Euler

• Backward Euler (B.E.) is unconditionally stable

– i.e. one can take very large time steps, whereas Forward 
Euler (F.E.) requires smaller time steps

• B.E. might excessively damp out the solution, 
whereas F.E. might blow up (i.e., NaNs)

• Each B.E. time step may be much harder to solve 
than a F.E. time step

– B.E. is more theoretically challenging and uses more 
CPU time

• Not always clear which is better…



Trapezoidal Rule

𝑦𝑛+1 = 𝑦𝑛 + Δ𝑡
𝑓 𝑡𝑛, 𝑦𝑛 + 𝑓 𝑡𝑛+1, 𝑦𝑛+1

2
• 2nd order accurate

• Unconditionally stable

• Need to solve for 𝑦𝑛+1 just like Backward Euler

• One can take very large time steps since it is stable

• Sometimes bad oscillatory behavior if Δ𝑡 is too big



The Best
Numerical Methods….



Back to our problem…

ሶ𝑥 = 𝑣
ሶ𝑣 = 𝐹/𝑚

• We can solve for velocity at one accuracy level 
lower than for positions (a multivalue method)

• Treating it as a standard system is overkill

• E.g., standard constant acceleration equations

• Ԧ𝑥𝑛+1 = Ԧ𝑥𝑛 + Δ𝑡 Ԧ𝑣𝑛 +
Δ𝑡2

2
Ԧ𝑎𝑛 piecewise quadratic

position

• Ԧ𝑣𝑛+1 = Ԧ𝑣𝑛 + Δ𝑡 Ԧ𝑎𝑛 piecewise linear velocity

• Ԧ𝑎𝑛+1 = Ԧ𝑎𝑛 piecewise constant acceleration (constant 
from time n to just before time n+1)



Newmark Methods

Ԧ𝑥𝑛+1 = Ԧ𝑥𝑛 + Δ𝑡 Ԧ𝑣𝑛 +
Δ𝑡2

2
[(1 − 2𝛽) Ԧ𝑎𝑛+2𝛽 Ԧ𝑎𝑛+1]

Ԧ𝑣𝑛+1 = Ԧ𝑣𝑛 + Δ𝑡 [(1 − 𝛾) Ԧ𝑎𝑛 + 𝛾 Ԧ𝑎𝑛+1]

• Most popular multi-value method in computational 
mechanics

• Actually a lot of methods in disguise

• Different choice of 𝛽 and 𝛾 makes a specific method

• 𝛽 and 𝛾 both identically 0 gives the standard constant 
acceleration case



Newmark Methods

• Second order accurate if and only if 𝛾 = 1/2

• Trapezoidal Rule when 𝛽 = 1/4

Ԧ𝑥𝑛+1 = Ԧ𝑥𝑛 + Δ𝑡 Ԧ𝑣𝑛 +
Δ𝑡2

2

(𝑎𝑛+Ԧ𝑎𝑛+1)

2

Ԧ𝑣𝑛+1 = Ԧ𝑣𝑛 + Δ𝑡
(𝑎𝑛+Ԧ𝑎𝑛+1)

2
– Substitute the acceleration terms from the second 

equation into the first, to see that the first equation is 
equivalent to 

Ԧ𝑥𝑛+1 = Ԧ𝑥𝑛 + Δ𝑡
(𝑣𝑛+Ԧ𝑣𝑛+1)

2



A Newmark Method…

1. Ԧ𝑣𝑛+1/2 = Ԧ𝑣𝑛 +
Δ𝑡

2
Ԧ𝑎(𝑡𝑛, Ԧ𝑥𝑛, Ԧ𝑣𝑛+1/2)

2. Modify Ԧ𝑣𝑛+1/2 in some cases, e.g. collisions

3. Ԧ𝑥𝑛+1 = Ԧ𝑥𝑛 + Δ𝑡 Ԧ𝑣𝑛+1/2

4. Ԧ𝑣𝑛+1 = Ԧ𝑣𝑛+1/2 +
Δ𝑡

2
Ԧ𝑎 𝑡𝑛+1, Ԧ𝑥𝑛+1, Ԧ𝑣𝑛+1

5. Modify Ԧ𝑣𝑛+1 in some cases, e.g. collisions



Implicit Solve

• Steps 1 and 4 are implicit in Ԧ𝑣𝑛+1/2 and Ԧ𝑣𝑛+1

respectively

• Typically the equations are linear in v, so we only
need to solve a single matrix system

• The matrix is generally symmetric positive definite 
(SPD) and we can use fast solvers such as conjugate 
gradients (CG) for solving the system

• Note that in the first step we are using Ԧ𝑥𝑛 instead of 
Ԧ𝑥𝑛+1/2

– The equations are typically highly nonlinear in x



Question #3

LONG FORM:
• Tell me everything about…. Nvm, have a nice day!

SHORT FORM:
• ☺


