Particles

Simulation Homework

- Build a <u>particle system</u> based either on F=ma or procedural simulation
 - Examples: Smoke, Fire, Water, Wind, Leaves, Cloth,
 Magnets, Flocks, Fish, Insects, Crowds, etc.
- Simulate a rigid body
 - Examples: Angry birds, Bodies tumbling, bouncing, moving around in a room and colliding, Explosions & Fracture, Drop the camera, Etc...

Particle

- A particle is simply a point in space with some attributes
- The attributes are what makes different kinds of particles
 - Mass (m)
 - Position (x)
 - Velocity (v)
 - External Force (F)
 - Color, Animal type, Etc.

Particle Motion

Dynamic

- A particle with a non-zero initial velocity tends to keep moving with that velocity (Newton's 1st Law)
- Its motion changes whenever unbalanced external forces are applied to it (Newton's 2nd Law)

Kinematic

- An "infinite mass" particle can move along a prescribed path or animated curve directed by an artist
 - Static a kinematic particle with zero velocity

Dynamics

Newton's Second Law

 The net force on an object is equal to the rate of change of its linear momentum P=mv

$$F = \frac{dP}{dt} = \frac{d(mv)}{dt} = ma$$

The last equality holds if the object has constant mass

Newton's Second Law

$$F = ma = m\ddot{x}$$

- This is a second order differential equation in position
- Higher order differential equations can be analyzed and solved by rewriting them as a system of first order equations:

$$\dot{x} = v$$

$$\dot{v} = F/m$$

Types of Forces

- A particle system that simulates water requires gravity as an external force, as well as internal forces for incompressibility and advection
- Dust particles (or leaves) require air currents and wind as external forces
- If particles are used to model cloth, we require elastic or spring forces between them
- If each particle is fish, they need attractive forces to school and repulsive forces to avoid collisions
- Etc...

Types of forces

- Constant forces (e.g. gravity)
- Time dependent forces (e.g. wind)
- Position dependent forces (e.g. force fields, spatially varying wind)
- Velocity dependent forces (e.g. drag, friction)
- Position & Velocity dependent forces (e.g. springs)

Gravity

- $F_{grav} = -mg$
 - $g = 9.8 \, m/s^2$ is a constant
 - *m* is the mass of the body/particle
- Simple ballistic motion...

Wind

- Position and time dependent force
- $f_{wind} = f(\vec{x}, t)$

Magnetism

• Assign the particles a magnetic monopole attribute q

- $|f_{magnet}| = \frac{\mu q_1 q_2}{4\pi r^2}$
 - q_1 and q_2 are magnitudes of magnetic monopoles, r is the distance between the poles, and μ is a constant
 - Also need to add a direction between particles
 - Like poles repel and unlike poles attract

Drag Force

- Velocity dependent force (linear in velocity)
- The faster the velocity, the larger the drag
 - think molasses or honey
- $f_{drag} = -k_{drag} v_{rel}$
 - where k_{drag} is the drag coefficient, and v_{rel} is the particle's velocity relative to the fluid it is in

Spring Force (no damping)

- Hooke's Law
- $F_{spring} = -kx$
- Linearization of the spring forces for small displacements

Spring Force (with damping)

- $F_{spring} = -kx k_d \dot{x}$
- Adds an exponential decay to the amplitude of oscillation
- It is a good practice to add some damping to physical systems to keep them form going unstable
 - and for realism

Question #1

LONG FORM:

- Briefly discuss various types of forces that can be used in video game simulations
- Answer short form question below

SHORT FORM:

- Can you think of a use for forces in <u>your</u> video game? Briefly explain
- (Notice I'm starting to assume you have a video game idea. Do you? ☺)

Collision Detection

Collisions

- As particles move around under the influence of gravity, drag, and other forces, how do they interact with other objects?
- This is where collisions come into play
- How do we <u>detect</u> collisions?
 - Check to see if a particle is <u>inside</u> some object

Example: Plane

- Consider for example using a plane to represent the ground (or a wall)
- Define the plane by a point \vec{p} and normal \vec{n}
- Given our particle position \vec{x} , we calculate

$$s = (\vec{x} - \vec{p}) \cdot \vec{n}$$

• \vec{x} is outside the plane if s>0 and inside if s<0

• Normal to the plane/object is given by \vec{n}

Example: Box

- Use a plane for each of the six faces of the box
- If the particle is inside all 6 faces, it is inside the box

- To find the normal, one has to identify the closest of the 6 planes
- This is given by the value of s closest to zero

Can be used for other convex polyhedra as well

Example: Sphere

- Define a sphere with a center \vec{c} and a radius r
- Given a point \vec{q} , calculate $s = |\vec{q} \vec{c}| r$.
- \vec{q} is outside the sphere if s>0 and inside if s<0
- Normal at the point is $(\vec{q} \vec{c})/|\vec{q} \vec{c}|$

Collision Response

Collision Response

- Do something to take the bodies from a "colliding state" to a "non-colliding state"
- What properties should a good response algorithm have?
 - Remove interpenetrations
 - Conserve linear and angular momentum
 - Have the correct relative velocities based on the material properties of the colliding bodies
 - Should look plausible!

Collision Response (Notation Key)

- c_R is the coefficient of restitution
 - 0 is completely inelastic; objects stick together
 - 1 is completely elastic; objects bounce without losing any kinetic energy
 - Between 0 and 1 means some energy is lost due to deformation, damage, sound, heat, etc.
- m_a is the mass of the first object
- m_b is the mass of the second object
- u_a is the velocity of the first object before impact
- u_b is the velocity of the second object before impact
- v_a is the velocity of the first object after impact
- v_b is the velocity of the second object after impact

Collision Response (Formulas)

$$c_R = -\frac{v_b - v_a}{u_b - u_a}$$
 (definition)

$$m_a u_a + m_b u_b = m_a v_a + m_b v_b$$
 (momentum conservation)

Two equations in two unknowns, solve...

•
$$v_a = \frac{(m_a u_a + m_b u_b - m_b c_R(u_a - u_b))}{(m_a + m_b)}$$

•
$$v_b = \frac{(m_a u_a + m_b u_b - m_a c_R(u_b - u_a))}{(m_a + m_b)}$$

 We can also look at this in terms of an impulse. The impulse required to change the velocity of object a is

$$j = m_a(v_a - u_a)$$

An equal and opposite impulse is applied to object b

If one object is infinitely heavy...

- Useful for kinematic objects (stationary or moving)
- Make m_b infinite
- $v_b = u_b$ (doesn't change)

•
$$v_a = \frac{(m_b u_b - m_b c_R(u_a - u_b))}{m_b} = u_b - c_R(u_a - u_b)$$

• If $u_b=0$ (stationary object, e.g. ground plane), then this further simplifies to $v_a=-c_Ru_a$

Collisions in 3D

Higher Spatial Dimensions

- The prior equations describe collision in 1D only
- In 3D, they describe the collision in the normal direction, i.e. on the components of velocity (dot product-ed) into the normal direction
- The tangential components of the velocity do not change, unless there is collisional friction

 Since most surfaces can be locally approximated as being planar, let's consider point plane collisions....

Point-Plane Collision Response

Collision only affects the normal component of velocity

As such, split the velocity into a normal and tangent

component:

More Collision Detection

- Need to detect that it's colliding with the wall, and not separating
- Make sure it is heading into the wall with: $\vec{V} \cdot \vec{N} < 0$

Collision Response

- Adjust the normal velocity of the particle to account for the collision
- Leave the tangential velocity unchanged
- Probably also want to <u>adjust the position</u> of the particle to move it to the surface of the object (if it is inside)

$$\vec{V}' = \vec{V}_T - c_R \vec{V}_N$$

Friction

- Let j_n be the collision impulse in the normal direction
- The new tangential velocity is $\vec{V}_T' = \vec{V}_T \frac{\mu |\vec{J}_n| V_T}{m |\vec{V}_T|}$, where μ is the coefficient of kinetic friction:

$$\vec{V}' = max \left(0, \left(1 - \frac{\mu |\vec{J}_n|}{m |V_T|} \right) \right) \vec{V}_T - c_R \vec{V}_N$$

- The clamping ensures that friction slows a particle down without changing its direction
- Static friction can be modeled by first applying this formula with the (typically larger) static friction coefficient
 - If the max clamps to 0, static friction stopped the object from moving
 - If not, then recompute the formula with the <u>smaller</u> kinetic friction coefficient

Question #2

LONG FORM:

- Briefly discuss implementing collisions
- Answer short form question below

SHORT FORM:

 Can you think of a good use for collisions in your video game? Briefly explain

ODEs

Ordinary Differential Equations (ODEs)

 An ODE is an equation containing a function of one independent variable t and its derivatives:

$$f(t, y, y', y'', ...) = 0$$

First order ODE's have at most one derivative:

$$f(t,y,y')=0$$

 If we can isolate the derivative term, we call it an explicit ODE (otherwise its implicit):

$$y' = f(t, y)$$

Well-Posed vs. Ill-Posed ODEs

- Model problem
- linear ODE $y' = \lambda y$
 - solution is $y = y_0 e^{\lambda(t-t_0)}$
 - 3 kinds of solutions
 - $\lambda > 0$ ill-posed (a)
 - $\lambda = 0$ mildly ill-posed (b)
 - λ < 0 well-posed (c)
- Ill-posed problems can not (should not) be solved (with any reasonable assurances) on the computer

Well-Posed vs. Ill-Posed ODEs

- Scalar ODE y' = f(t, y)
 - Derivatives $\frac{df}{dy} = \lambda$ must be negative (or \leq 0 for mild well-posedness) for all values of t and y we are concerned with
- Systems of ODEs $\vec{y}' = f(t, \vec{y})$
 - All eigenvalues of the Jacobian matrix $J=\frac{d\vec{f}}{d\vec{y}}$ must be negative (or \leq 0) for all t and \vec{y} we are concerned with
- Poor choices of the forces in F=ma can lead to ill-posed problems!

Numerical Approximation of Derivatives

Time discretization

$$(y^{n+1}-y^n)/\Delta t = f(t^n, y^n)$$

or... $y^{n+1} = y^n + \Delta t f(t^n, y^n)$

- This method is called Forward Euler
- Start at some initial time t^0 with initial value y^0
- Recursively compute the values for the next time step using the values from the current time step
- Δt can be either fixed or adaptively varied for better accuracy and stability

Example

Forward Euler on y' = -y for $y^0 = 1$, $t^0 = 0$ $\Delta t = .5$ is stable

 $\Delta t = 3$ is unstable

Forward Euler: Stability

- Consider model equation $y' = \lambda y$ with $\lambda < 0$
 - Recall the analytic solution is exponential decay: $y(t) = y_0 e^{\lambda(t-t_0)}$
- Forward Euler's method applied to the model equation is $y^{n+1} = y^n + \Delta t \lambda y^n = (1 + \Delta t \lambda) y^n$
- So $y^n=(1+\Delta t\lambda)^n y^0$, and the solution decays when $|1+\Delta t\lambda|<1$
- Thus, $-2 < \Delta t \lambda < 0$ is needed for stability
 - We have $\Delta t \lambda < 0$ trivially, since $\lambda < 0$
- Time step restriction is $\Delta t < 2/|\lambda|$

Forward Euler: Accuracy

- $O(\Delta t^2)$ error in each time step (shown via Taylor series)
- $O\left(\frac{1}{\Delta t}\right)$ time steps to get to an O(1) final time
- $O(\Delta t^2) \times O(\frac{1}{\Delta t}) = O(\Delta t)$ total error
- 1st order accurate

Runge-Kutta Schemes

- Runge-Kutta (R.K.) builds on Forward Euler (F.E.)
- Achieves better accuracy by predicting solutions using F.E.
 - and then uses averaging to get new solutions
- Different prediction and averaging schemes give rise to different R.K. schemes
- 1st order (accurate) R.K. is same as F.E.

2nd Order (Accurate) Runge Kutta

Take two successive F.E. steps:

$$\frac{y^{n+1}-y^n}{\Delta t} = f(t^n, y^n) \text{ and } \frac{y^{n+2}-y^{n+1}}{\Delta t} = f(t^{n+1}, y^{n+1})$$

Average the initial and final states:

$$y^{n+1} = \frac{1}{2}y^n + \frac{1}{2}y^{n+2}$$

 If the solution is well behaved for each F.E. step, then since linear interpolation is well behaved, the result is well behaved

3rd Order (Accurate) Runge Kutta

Take two successive F.E. steps:

$$\frac{y^{n+1}-y^n}{\Delta t} = f(t^n, y^n) \text{ and } \frac{y^{n+2}-y^{n+1}}{\Delta t} = f(t^{n+1}, y^{n+1})$$

Average the initial and final states:

$$y^{n+1/2} = \frac{3}{4}y^n + \frac{1}{4}y^{n+2}$$

Take another F.E. step:

$$\frac{y^{n+3/2} - y^{n+1/2}}{\Delta t} = f(t^{n+1/2}, y^{n+1/2})$$

- Then average again: $y^{n+1} = \frac{1}{3}y^n + \frac{2}{3}y^{n+3/2}$
- 3rd order R.K is not only more accurate but has some better stability properties

Backward Euler

$$y^{n+1} = y^n + \Delta t f(t^{n+1}, y^{n+1})$$

- Equation is implicit in y^{n+1} , so generally need to solve a nonlinear equation to find y^{n+1}
- Newton iteration.... linearize, solve, linearize, solve, etc.
- Some applications (that allow for larger errors) only use one linearize and solve cycle
- Sometimes f is already linear in y
- Accuracy 1st order (same as forward Euler)

Backward Euler: Stability

- Consider model equation $y' = \lambda y$ with $\lambda < 0$
- Backward Euler applied to the model equation is $y^{n+1} = y^n + \Delta t \lambda y^{n+1} = (1 \Delta t \lambda)^{-1} y^n$
- So $y^n=(1-\Delta t\lambda)^{-n}y^0$ and the solution decays when $|1-\Delta t\lambda|>1$
 - Always true!
- Unconditionally stable works for all Δt
- No time step restriction...

Backward Euler vs. Forward Euler

- Backward Euler (B.E.) is unconditionally stable
 - i.e. one can take very large time steps, whereas Forward Euler (F.E.) requires smaller time steps
- B.E. might excessively damp out the solution, whereas F.E. might blow up (i.e., NaNs)
- Each B.E. time step may be much harder to solve than a F.E. time step
 - B.E. is more theoretically challenging and uses more CPU time
- Not always clear which is better...

Trapezoidal Rule

$$y^{n+1} = y^n + \Delta t \frac{f(t^n, y^n) + f(t^{n+1}, y^{n+1})}{2}$$

- 2nd order accurate
- Unconditionally stable
- Need to solve for y^{n+1} just like Backward Euler
- One can take very large time steps since it is stable
- Sometimes bad oscillatory behavior if Δt is too big

Back to our problem...

$$\dot{x} = v$$

$$\dot{v} = F/m$$

- We can solve for velocity at one accuracy level lower than for positions (a multivalue method)
- Treating it as a standard system is overkill
- E.g., standard constant acceleration equations
 - $\vec{x}^{n+1} = \vec{x}^n + \Delta t \vec{v}^n + \frac{\Delta t^2}{2} \vec{a}^n$ piecewise quadratic position
 - $\vec{v}^{n+1} = \vec{v}^n + \Delta t \vec{a}^n$ piecewise linear velocity
 - $\vec{a}^{n+1} = \vec{a}^n$ piecewise constant acceleration (constant from time n to just before time n+1)

Newmark Methods

$$\vec{x}^{n+1} = \vec{x}^n + \Delta t \vec{v}^n + \frac{\Delta t^2}{2} [(1 - 2\beta)\vec{a}^n + 2\beta \vec{a}^{n+1}]$$
$$\vec{v}^{n+1} = \vec{v}^n + \Delta t [(1 - \gamma)\vec{a}^n + \gamma \vec{a}^{n+1}]$$

- Most popular multi-value method in computational mechanics
- Actually a lot of methods in disguise
- Different choice of eta and γ makes a specific method
- β and γ both identically 0 gives the standard constant acceleration case

Newmark Methods

- Second order accurate if and only if $\gamma = 1/2$
- Trapezoidal Rule when $\beta = 1/4$

$$\vec{x}^{n+1} = \vec{x}^n + \Delta t \vec{v}^n + \frac{\Delta t^2}{2} \frac{(a^n + \vec{a}^{n+1})}{2}$$
$$\vec{v}^{n+1} = \vec{v}^n + \Delta t \frac{(a^n + \vec{a}^{n+1})}{2}$$

 Substitute the acceleration terms from the second equation into the first, to see that the first equation is equivalent to

$$\vec{x}^{n+1} = \vec{x}^n + \Delta t \frac{(v^n + \vec{v}^{n+1})}{2}$$

A Newmark Method...

1.
$$\vec{v}^{n+1/2} = \vec{v}^n + \frac{\Delta t}{2} \vec{a}(t^n, \vec{x}^n, \vec{v}^{n+1/2})$$

- 2. Modify $\vec{v}^{n+1/2}$ in some cases, e.g. collisions
- 3. $\vec{x}^{n+1} = \vec{x}^n + \Delta t \vec{v}^{n+1/2}$
- 4. $\vec{v}^{n+1} = \vec{v}^{n+1/2} + \frac{\Delta t}{2} \vec{a}(t^{n+1}, \vec{x}^{n+1}, \vec{v}^{n+1})$
- 5. Modify \vec{v}^{n+1} in some cases, e.g. collisions

Implicit Solve

- Steps 1 and 4 are implicit in $\vec{v}^{n+1/2}$ and \vec{v}^{n+1} respectively
- Typically the equations are linear in v, so we <u>only</u> need to solve a single matrix system
- The matrix is generally symmetric positive definite (SPD) and we can use fast solvers such as conjugate gradients (CG) for solving the system
- Note that in the first step we are using \vec{x}^n instead of $\vec{x}^{n+1/2}$
 - The equations are typically highly nonlinear in x

Question #3

LONG FORM:

Tell me everything about.... Nvm, have a nice day!

SHORT FORM:

• ⓒ