Rigid Bodies
Simulation Homework

• Build a particle system based either on F=ma or procedural simulation
 – Examples: Smoke, Fire, Water, Wind, Leaves, Cloth, Magnets, Flocks, Fish, Insects, Crowds, etc.

• Simulate a Rigid Body
 – Examples: Angry birds, Bodies tumbling, bouncing, moving around in a room and colliding, Explosions & Fracture, Drop the Camera, etc.

Thursday Simulation & Unity
Consider a rigid body

It can be broken up into chunks (or elements), and each chunk can be treated as a single particle if it is small enough.
Center of Mass

- A body composed of \(n \) particle “chunks” with masses \(m_i \) has total mass

\[
M = \sum_{i=1}^{n} m_i
\]

- If the particles have positions \(\vec{x}_i \), the center of mass is

\[
\vec{x} = \frac{\sum_{i=1}^{n} m_i \vec{x}_i}{M}
\]

- The center of mass for a rigid body has position \(\vec{x} \) and translational velocity \(\vec{v} \) similar to a single particle
- When we refer to the position and velocity of a rigid body, we are referring to the position and translational velocity of its center of mass
- The center of mass obeys the same ODE’s for position and velocity as a particle does, but using the TOTAL mass and the NET force
Orientation
Orientation

- A rigid body can rotate or change its orientation while its center of mass is stationary
- Different ways to keep track of the rotation R:
 - 3x3 Matrix, 3 Euler angles, 1 Quaternion
- Place a coordinate system at the center of mass in object space
- The rotation R rotates the rigid body, and the object space coordinate system, into its world space orientation
- Recall: the columns of R are the three object space axes in their world space orientations
Combining Position and Orientation

- The rigid body has an intrinsic coordinate system in its object space, with its center of mass at the origin.
- It’s put into world space with a translation and a rotation.
Combining Position and Orientation

- The translation of the origin of the object space coordinate system is given by the position of the center of mass \bar{x}
- The world space orientation of the object space coordinate system is given by R
 - Assume R is a matrix, equivalently expressed as a unit quaternion
- A point x^o in object space has a world space location
 $$x^w = \bar{x} + Rx^o$$
 - Notice that the center of mass (at the origin) maps to \bar{x}
 - Notice that $(1,0,0)$, $(0,1,0)$, $(0,0,1)$ are all rotated by R before being translated by \bar{x}
Angular Velocity
Angular Velocity

• Both \bar{x} and R are functions of time
• The rate of change of the position of the center of mass \bar{x} with respect to time is the **translational velocity** of the center of mass \bar{v}
• (From our quaternion discussion...) The orientation of the body is changing as it is rotated about some axis \hat{n} emanating from the center of mass
• The rate of change of the orientation R is given by the world space **angular velocity** ω
 – its direction is the axis of rotation, \hat{n}
 – Its magnitude is the speed of rotation
• The pointwise velocity of any point x on the rigid body is given by
 \[v_p = \bar{v} + \omega \times (x - \bar{x}) = \bar{v} + \omega \times r \]
 where r is the moment arm and \times is the cross-product
Aside: Cross Product Matrix

• Given vectors \(a = [a_1, a_2, a_3] \) and \(b = [b_1, b_2, b_3] \), their cross product \(a \times b \) can be written as matrix multiplication \(a^*b \) by converting \(a \) to a cross product matrix

\[
\begin{pmatrix}
0 & -a_3 & a_2 \\
a_3 & 0 & -a_1 \\
-a_2 & a_1 & 0
\end{pmatrix}
\]

• \(a^T = -a^* \)

• \(a^*b = -b^*a \)

• Using this new notation, the pointwise velocity of any point \(x \) on the object is then given by:

\[
\nu_p = \bar{\nu} + \omega^* r
\]
Linear and Angular Velocity

\[\mathbf{x}, \mathbf{v}, \omega \]
ODE for Orientation

• The ODE for orientation (angular position) is given by

\[\dot{R} = \omega^* R \]

• That is, \(\dot{R} = \omega \times R \) where the cross product is applied independently to each of the three columns of \(R \)

• Writing the 3x3 matrix \(\omega^* \) and using matrix multiplication \(\omega^* R \) automatically performs these 3 cross products
Inertia Tensor
Inertia Tensor

• Linear momentum is defined as the product of the mass times the translational velocity
 – Mass is something that resists change in velocity
• Angular momentum L is defined as an “angular mass” times the angular velocity ω
• The “angular mass” is called the moment of inertia (or inertia tensor) I of the rigid body
• If you spin in your chair while extending your legs, and then suddenly pull your legs closer the chair spins faster
 – I reduces when you pull your legs closer.
 – Hence ω has to increase to keep angular momentum $L = I\omega$ constant
Inertia Tensor

• For a system of n particles, the angular momentum is

\[L = \sum_i (x_i^w)^* m_i v_i = \sum_i (\bar{x} + r_i)^* m_i v_i = \bar{x}^* M \bar{v} + \sum_i r_i^* m_i v_i \]

 – where \(r_i \) is the moment arm of the \(i^{th} \) particle

• \(v_i \) can be written as \(\bar{v} + \omega^* r_i \) so

\[L = \bar{x}^* M \bar{v} + \sum_i r_i^* m_i \bar{v} + \sum_i r_i^* m_i \omega^* r_i \]

• \(\sum_i r_i^* m_i \bar{v} = (\bar{v}^*)^T \sum_i m_i r_i = 0 \) so

\[L = \bar{x}^* M \bar{v} + \sum_i m_i (r_i^*)^T r_i^* \omega = \bar{x}^* M \bar{v} + I \omega \]

 – where \(I = \sum_i m_i (r_i^*)^T r_i^* \)
Object Space Inertia Tensor

- We can pre-compute the object space inertia tensor as a 3x3 matrix I^o

- Then, the world space inertia tensor is given by the 3x3 matrix

\[I = R I^o R^T \]

- One can compute the SVD of the symmetric 3x3 matrix I^o to obtain $I^o = U D U^T$ where D is a 3x3 diagonal matrix of 3 singular values

- Then rotating the object space rest state of the rigid body by U^{-1} gives a new object space inertia tensor of

\[U^{-1} I^o U^{-T} = U^{-1} U D U^T U^{-T} = D \]

- That is, properly orienting the rest pose of a rigid body in object space gives a diagonal object space inertia tensor I^o
Forces and Torques

• Newton’s second law for angular quantities
• A force F changes both the linear momentum $M\vec{v}$ and the rotational (angular) momentum L
• The change in linear momentum is independent of the point on the rigid body x where the force is applied
• The change in angular momentum does depend on the point x where the force is applied
• The **torque** is defined as
 \[
 \tau = (x - \bar{x}) \times F = r \times F
 \]
• The net change in angular momentum is given by the sum of all the external torques
 \[
 \dot{L} = \tau
 \]
ODEs
Rigid Body: Equations of Motion

- State vector for a rigid body

\[X = \begin{pmatrix} \ddot{\bar{x}} \\ \dot{R} \\ \dot{M} \bar{v} \\ L \end{pmatrix} \]

- Equations of motion

\[\frac{d}{dt} X = \frac{d}{dt} \begin{pmatrix} \ddot{\bar{x}} \\ \dot{R} \\ \dot{M} \bar{v} \\ L \end{pmatrix} = \begin{pmatrix} \ddot{\bar{v}} \\ \omega^* R \\ F \\ \tau \end{pmatrix} \]
Rigid Body: Equations of Motion

• State vector for a rigid body

\[X = \begin{pmatrix} \bar{x} \\ R \\ \bar{v} \\ L \end{pmatrix} \]

• Equations of motion

\[\frac{d}{dt} X = \frac{d}{dt} \begin{pmatrix} \bar{x} \\ R \\ \bar{v} \\ L \end{pmatrix} = \begin{pmatrix} \ddot{\bar{v}} \\ \omega^* R \\ F/M \\ \tau \end{pmatrix} \]

Equations of motion for a particle at the center of mass
Forward Euler Update

\[X^{n+1} = X^n + \Delta t \begin{pmatrix} \vec{v} \\ \omega^*R \\ F/M \\ \tau \end{pmatrix} \]

- Newmark for better accuracy and stability, etc...
- Better results are obtained on the second equation by rotating the columns of \(R \) directly using the vector \(\Delta t \omega \)
- Need to periodically re-orthonormalize the columns of \(R \) to keep it a rotation matrix
Rigid Body: Equations of Motion

• State vector for a rigid body

\[X = \begin{pmatrix} \bar{x} \\ q \\ \bar{v} \\ L \end{pmatrix} \]

• Equations of motion

\[\frac{d}{dt} X = \frac{d}{dt} \begin{pmatrix} \bar{x} \\ q \\ \bar{v} \\ L \end{pmatrix} = \begin{pmatrix} \bar{v} \\ \frac{1}{2} \omega^* q \\ F/M \\ \tau \end{pmatrix} \]

• Once again, preferable to rotate \(q \) by \(\Delta t \omega \)

• Renormalize \(q \) using a square root
Question #1

LONG FORM:
• Summarize rigid body simulation.
• Identify 10 rigid bodies in a typical room.

SHORT FORM:
• Identify 10 rigid bodies in this room.
Geometry
Rigid Body Modeling

- Store an object space **triangulated surface** to represent the **surface** of the rigid body
- Store an object space **implicit surface** to represent the **interior volume** of the rigid body
- **Collision detection** between two rigid bodies can then be carried out by checking the surface of one body against the interior volume of another
- Implicit surfaces can be used to model the interior volume of kinematic and static objects as well
- Implicit surface representations of interior volumes can also be used for collisions with particles and particle systems
Recall: Implicit Surfaces

- Implicit surfaces represent a surface with a function $\phi(x)$ defined over the whole 3D space.
- The inside region Ω^-, the outside region is Ω^+, and the surface $\partial \Omega$ are all defined by the function $\phi(x)$.
 - $\phi(x) < 0$ inside
 - $\phi(x) > 0$ outside
 - $\phi(x) = 0$ surface

- Easy to check if a point is inside an object.
- Efficient to make topology changes to an object.
- Efficient boolean operations: Union, Difference, Intersection.
Analytic Implicit Surfaces

- For simple functions, write down the function and analytically evaluate $\phi(x)$ to see if $\phi(x) < 0$ and thus x is inside the object.
- 2D circle
- 3D ellipsoid

\[
\left(\frac{x}{r_x}\right)^2 + \left(\frac{y}{r_y}\right)^2 + \left(\frac{z}{r_z}\right)^2 - 1 = 0
\]
Discrete Implicit Surfaces

• Lay down a grid that spans the space you are trying to represent, e.g. a padded bounding box
• Store values of the function at grid points
• Then for arbitrary locations in space, interpolate from the nearby values on the grid to see if $\phi(x) < 0$
 • use trilinear interpolation, like 3D textures
• **Signed Distance Functions** are implicit surfaces where the magnitude of the function gives the distance to the closest point on the surface
Constructing Signed Distance Functions

• Start with a triangulated surface
• Place a grid inside a slightly padded bounding box of the object
 – This grid will contain point samples for the signed distance function
 – The resolution of the grid is based on heuristics
• Place a sphere at every grid point and find all intersecting triangles
 – the radius of the sphere only needs to be a few grid cells wide, because we only care about grid points near the triangulated surface
 – If the sphere does not intersect any triangles, then the grid point is not near the triangulated surface
 – (An acceleration structure is useful, e.g. bounding box hierarchy)
• For each nearby triangle, find the closest point on that triangle
 – see 3D Distance from a Point to a Triangle by Mark W. Jones for details
• Take the minimum of all such distances as the magnitude of ϕ
• Could initialize all grid points this way, but it is expensive for points farther from the surface where one has to check many more (potentially all) triangles
Fast Marching Method

• Similar to Dijkstra's algorithm
• Walk outwards from the previously initialized points to fill the rest of the domain

Initialization
• Mark all the previously computed points nearby the triangulated surface as Black
• Mark the rest of the points White

Iteration
• White points adjacent to Black points are re-labeled as Red
• Estimate the distance value for all Red points using only their Black neighbors
 – by solving a quadratic equation for distance
• The Red point with the smallest distance value is found and labeled Black
 – a heap data structure is ideal, and then the fast marching method runs in $O(N \log N)$ where N is the number of grid points
• Labeling this point Black turns some White points into Red
 – and also changes the value of some of the previously computed Red points, since there is a new Black point to use in their distance computation
Sign of ϕ

- Perform a flood fill on the grid
 - Start from a random grid point
 - Put it on a stack; mark it as 0
 - Pop it off; put its connected non-occluded neighbors on the stack; mark them as 0; repeat
 - When there are no more cells on the stack, find a random uncolored cell, mark it as 1, and repeat
- The region (0 or 1) that touches the grid boundary is marked as outside
- The other region is marked as inside
- Could have more than two regions in some cases
Question #2

LONG FORM:
• Summarize rigid body geometric modeling.
• Answer short form question below

SHORT FORM:
• Give an example of a rigid body with an interesting shape that could be used in a game. How would it be used?
Collisions
Collision Detection

- Test all the triangulated surface points of one body against the implicit surface volume of the other (and vice versa)
 - A world space point is put into object space to check against an implicit surface using
 \[x^o = R^{-1}(x^w - \bar{x}) \]

- Partial derivatives are used to compute the normal
 \[n(x_0, y_0, z_0) = \left(\frac{d\phi}{dx}, \frac{d\phi}{dy}, \frac{d\phi}{dz} \right) \bigg|_{x_0,y_0,z_0} \]

- \[Normal(x_0, y_0, z_0) = \frac{n(x_0, y_0, z_0)}{|n(x_0, y_0, z_0)|} \]

- Note: A particle can be moved to the surface of the implicit surface by tracing a ray in the normal direction and looking for the intersection with the \(\phi = 0 \) isocontour (see CS148)
Rigid Body Collisions

Collision detection

Compute the initial relative velocity

u_1

u_2

The final relative velocity is calculated using the coefficient of restitution.

Calculate and apply the collision impulse

\mathbf{j}_1

\mathbf{j}_2

After evolving the bodies in time, they eventually separate
Collision Response

Equations for applying an impulse to one body with collision location r_p with respect to its center of mass:

- $M\vec{v}^{\text{new}} = M\vec{v} + j$
- $I\omega^{\text{new}} = I\omega + r_p^*j$ (note I doesn’t change)
- And then, in terms of the pointwise velocity...
 - $u_p^{\text{new}} = \vec{v}^{\text{new}} + \omega^{\text{new}}^* r_p = \vec{v}^{\text{new}} + r_p^*T \omega^{\text{new}}$
 - $u_p^{\text{new}} = \vec{v} + \frac{j}{M} + r_p^*T (\omega + I^{-1}r_p^*j)$
 - $u_p^{\text{new}} = u_p + \left(\frac{1}{M}I_{3x3} + r_p^*T I^{-1}r_p^*\right)j = u_p + Kj$
- Infinite mass kinematic/static objects (e.g. ground plane) are treated by setting the impulse factor $K = 0$
Collision Response

- Equal and opposite impulse applied to each body:
 \[u_{1}^{new} = u_{1} + K_{1}j \quad \text{and} \quad u_{2}^{new} = u_{2} - K_{2}j \]

- Calculate the relative velocity \(u_{rel} = u_{1} - u_{2} \) at the point of collision
 - Relative normal velocity is \(u_{rel,N} = u_{rel} \cdot N \)
 - Only collide when \(u_{rel,N} < 0 \), i.e. bodies not already separating

- Define a total impulse factor \(K_{T} = K_{1} + K_{2} \), then
 \[u_{rel}^{new} = u_{rel} + K_{T}j \]
 \[u_{rel,N}^{new} = u_{rel,N} + N^{T}K_{T}j \]

- Since the collision impulse should be in the normal direction, we can write \(j = Nj_{n} \), hence
 \[u_{rel,N}^{new} = u_{rel,N} + N^{T}K_{T}Nj_{n} \]

- Given \(u_{rel,N}^{new} = -c_{R}u_{rel,N} \), we solve for \(j_{n} \) and apply \(j = Nj_{n} \)
Friction

- Relative tangential velocity is \(u_{rel,T} = u_{rel} - u_{rel,N}N \)
- First assume static friction, i.e. \(u_{rel,T}^{new} = 0 \), so that
 \[
 u_{rel}^{new} = -c_R u_{rel,N}N
 \]
- Solve for a full 3D impulse \(j \) using \(u_{rel}^{new} = u_{rel} + K_T j \), by inverting the 3x3 matrix \(K_T \)
- If this impulse is in the friction cone, i.e. if \(|j - (j \cdot N)N| \leq \mu_s (j \cdot N) \), then the assumption of sticking due to static friction was correct
- Otherwise we start over using kinetic friction instead (\(\mu_k \leq \mu_s \))
 - With tangential direction \(T = \frac{u_{rel,T}}{|u_{rel,T}|} \), the kinetic friction impulse is \(j = j_n N - \mu_k j_n T \)
 - And we can solve \(-c_R u_{rel,N} = u_{rel,N} + N^T K_T (N - \mu_k T) j_n \) to find \(j_n \) before applying \(j = (N - \mu_k T) j_n \)
Question #3

LONG FORM:
• Summarize rigid body collision handling.
• Answer short form question below.

SHORT FORM:
• Give an example of using collisions between rigid bodies for a game.
Fracture
Fracture
Fracture

• Suppose a rigid body fractures into n pieces with masses \(m_1, m_2, \ldots, m_n \), velocities \(v_1, v_2, \ldots, v_n \), inertia tensors \(I_1, I_2, \ldots, I_n \) and angular velocities \(\omega_1, \omega_2, \ldots, \omega_n \).

• The mass and inertia tensor of each new piece can be computed based on the geometry.

• What can we say about the fractured pieces?
 – \(Mv = \sum m_i v_i \)
 – \(I\omega = \sum (r_i^* m_i v_i + I_i \omega_i) \)

• To ensure this:
 – Assign each rigid body the velocity its newly created center of mass had before fracturing i.e. \(v_i = v + \omega \times r_i \)
 • where \(r_i \) points from the center of mass of the original rigid body to the center of mass of the i-th child
 – Angular momentum is then conserved by setting \(\omega_i = \omega \).