
Articulated Characters

Skeleton

• A skeleton is a framework of rigid body “bones”
connected by articulated joints

• Used as an (invisible?) armature to position and
orient geometry (usually surface triangles)

Joints

• Joints connect rigid bodies together, while allowing
for relative motion between them

• Different types: hinge, ball-and-socket, saddle joint,
sliding…

• A Joint has 0-6 degrees of freedom (DoF)

– A 0-DoF joint rigidly connects two bodies into a single
rigid body

– A full 6-DoF joint doesn’t do anything, and each of the
bodies are free to move entirely independently

– Typical joints are somewhere in-between (i.e. from 1-5
DoF)

Joints

• Rotational Joints

– 1-DoF: a rotation matrix Rot4x4(n,θ) defined by axis n and angle θ

– 2-DoF: multiplication of two sequential rotation matrices about
different axes

– 3-DoF: multiplication of 3 sequential rotation matrices about 3
different axes
• Like Euler Angles, has the same problem of Gimbal lock

• Better to specify a 3D rotation about an arbitrary axis (quaternion-style)

• Translational Joint

– Can be specified to translate along any axis: (1-DoF, 2-DoF, 3-DoF)

– Translation matrix T4x4(v) is defined by the translation vector v

• Compound Joint

– Combines rotational and translational joints together

Examples

• rotation along
one axis
• DoF=1

• rotation along
all 3 axes
• DoF=3

• back and forth &
up and down motion
• no “rotation”
• DoF=2

• sliding in a plane
• DoF=2

Image from http://www.shockfamily.net/skeleton/JOINTS.HTML

Hinge

Ball-and-socket

Saddle

Sliding

Joint Parameters

• Offset
– A fixed translational displacement in the space of the parent

body/joint, which acts as a pivot point for the joint’s movement

• Orientation
– Orientation of a joint’s local coordinate system defined in the

space of its parent body/joint (a matrix or quaternion)

– If using homogeneous coordinates, offset and orientation can be
defined together in one 4x4 matrix

• Joint Limits
– The minimum and maximum limits for each DOF that can be

enabled or disabled independently

– E.g. the human elbow can bend to about +150 degrees and
hyperextend back as much as –10 degrees

Joint Parameters

J1
Offset: (0,6)
Orientation: Rot(-45)
Limit: None

J2
Offset: (5,0)
Orientation: Rot(50)
Limit: [0,90]

J3
Offset: (4,0)
Orientation: Rot(30)
Limit: [-90,90]

Joint Hierarchies

Joints in Character Animation

• Joints are organized in a hierarchy

• The root is the position of the “base” of the skeleton

– typically the backbone or pelvis

– the root has all 6 DoF so it can be placed anywhere with any orientation

• Typically, other joints have only rotational DoFs

– but in reality they have prismatic (translational) components as well

3 translational and
48 rotational DoFs

1 DoF: Knee 2 DoFs: Wrist 3 DoFs: Shoulder
Image from http://www.cc.gatech.edu/classes/AY2012/cs4496_spring/

State Vector

Root Joint

Image from http://www.cc.gatech.edu/classes/AY2012/cs4496_spring/

Hierarchical Representation

• The articulated skeleton can be described by a
tree

– Nodes: joints

– Edges: bones

• The transformation of a joint is defined
relative to its parent joint/body in the
hierarchy

Forward Kinematics

Forward Kinematics

• Specify the base position/joint along with the other joint angles
to prescribe motion

• To compute the final position and orientation of a joint in the
world coordinate system, the transformations of all parent
joints are combined together
– Changing a parent joint affects *all* of its child bodies/joints

– Changing a child joint does not affect any of its parent bodies/joints

α

β

x

α+Δ α
β+ Δ β

x+Δx

Forward Kinematics

J1
Offset: (0,6)
Orientation: Rot(-45)

J2
Offset: (5,0)
Orientation: Rot(50)

J3
Offset: (4,0)
Orientation: Rot(30)

P: In C.S. {X3,Y3}: (2,0)

Pworld=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)Plocal

In C.S. {x3,y3}
In C.S. {x2,y2}

In C.S. {x1,y1}

In C.S. {xworld,yworld}

Goal: Compute the position
of a local point P in the
world space

Recall: Transformations in World & Object Space

T(1,1)

R(45) T(1,1)

R(45)

R(45) T(1,1)

World Space: Read right to left Object Space: Read left to right

In the View of World Space

Pworld=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)Plocal

In the View of World Space

Pworld=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)Plocal

In the View of World Space

Pworld=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)Plocal

In the View of World Space

Pworld=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)Plocal

In the View of World Space

Pworld=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)Plocal

In the View of World Space

Pworld=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)Plocal

In the View of World Space

Pworld=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)Plocal

In the View of Object Space

Pworld=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)Plocal

In the View of Object Space

Pworld=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)Plocal

In the View of Object Space

Pworld=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)Plocal

In the View of Object Space

Pworld=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)Plocal

In the View of Object Space

Pworld=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)Plocal

In the View of Object Space

Pworld=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)Plocal

In the View of Object Space

Pworld=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)Plocal

Pros and Cons

• The hierarchy is simple and efficient:

– Specify the motion of the root node first

– Then specify the poses of children one layer at a time

• Especially suitable for modeling motions in open space
(without constraints)

– E.g. flying birds, swimming fish…

• Has difficulties with interactions with the environment

– Making a foot stay on the ground, fingers stay in contact with
a cup, etc.

Forward Kinematics Equations

• Given values for the joint DoF

θ=[θ1, θ2, …, θn]T

• Compute the end effectors in world space

e=[e1, e2, …, em]T

• Forward Kinematics defines and uses the function

e=F(θ)

Given θ=[θ1, θ2, θ3]T

Find e=[e1 , e2]T

θ1

θ2

θ3
e2

e1

(e1,e2) = F (θ1, θ2, θ3)

Inverse Kinematics

Inverse Kinematics Equations

• Given the values for the end effectors in world
space

e=[e1, e2, …, em]T

• Compute the joint angles

θ=[θ1, θ2, …, θn]T

• Inverse Kinematics defines:

θ =G(e)

θ1

θ2

θ3
e2

e1

Find θ=[θ1, θ2, θ3]T

Given e=[e1 , e2]T

(θ1, θ2, θ3) = G(e1,e2)

Inverse Kinematics
• Finding a solution for IK can be hard

– one unique solution

– infinite solutions (underconstrained)

– no solution (overconstrained)

• Cannot be solved analytically in most cases

• Usually requires numerical methods

– Jacobian iterative method

– Optimization based methods

θ1

θ2

θ3

θ1

θ2

θ3

Two solutions [θ1, θ2, θ3]T for constrained [e1 , e2]T

e1 e2 e2e1

Linearization

• Use the secant approximation on e=F(θ):

e-e0 = dF/dθ (θ-θ0)

• Here J=dF/dθ is the Jacobian matrix of partial derivatives

• J defines the instantaneous changes in the end effectors e
relative to infinitesimal changes in the angles θ

• since e=F(θ) is nonlinear, J is only valid as an approximation
near the current configuration θ0

• Algorithm: replace e with etarget and solve for θ

Jacobian Matrix
• For e=[e1, e2, …, em]T and θ=[θ1, θ2, …, θn]T,

• The column for the jth joint can be computed numerically as:

where

• If the jth joint is a rotational joint with a single degree of freedom then the element
corresponding to the ith end effector in the jth column of J can be computed
analytically as:

where vj is the unit vector pointing along the axis of rotation, pj is the position of
the joint, and si is the position of the ith end effector































































n

mmm

n

n

FFF

FFF

FFF

J







...

............

...

...

21

2

2

2

1

2

1

2

1

1

1

() ()j j

j

j

F θ F

θ





 


θ b θ
J

T
jth

j]0,0,...,1,...,0,0[b

)(jijij psvJ 

Iterative Solver
Input: e0 – current end effector positions

et – target end effector positions
θ0 – current DoFs

Algorithm:

while(|et – e0| > threshold){
compute J; // Take many small steps and recompute J at each step

δe= et - e0; // Can scale this down to aim for smaller steps

Solve J δθ= δe to find δθ;
update the DoF with a small step of αδθ: i.e., θ0+= αδθ;

update end effectors: e0 =F(θ0);

}

Solving J δθ= δe
• J is not guaranteed to be invertible, and is typically not even a square matrix
• If J is overdetermined, multiply both sides by JT, solve JT J δθ= JT δe for the

least-squares solution (Householder is better!)
– this gives the unique solution too, if it exists (of course, there are better

methods if the solution is unique)
• If J is underdetermined, use pseudo inverse J+ to obtain δθ= J+ δe for the

minimum norm solution
– The general solution of δθ= J+ δe can be written as

δθ= J+ δe+(I- J+J)γ
– The second term (I- J+J) represents the orthogonal projection to the null

space of J
– For any β= (I- J+J)γ we have J β=0, which means β will only affect the

interior joints and causes no motion of the end effectors
– This null space term can be used for some secondary goals, e.g. finding

the most natural positions for the joints, balance, etc.
• think about all the “styles” of walking

• Take CS205!

Pros and Cons
• Modeling poses of characters interacting with other

objects

– E.g., make sure fingers are exactly in contact with a cup

• Cannot get a solution if the target position is
impossible (over-constrained)

– Try to find a solution as close as possible in some sense,
but this could look bad

• Hard to pick the best solution for an under-
constrained system (null space matters!)

– Requires additional constraints or optimizing some
quantities

Question #1

LONG FORM:
• Summarize forward and inverse kinematics.
• Describe your ideas, so far, for your game.

SHORT FORM:
• Give a name to each game we discuss in class.

Puppeteering

Puppeteering
• Specifying animation curves and

splines for every degree of freedom
(root and all angles) by hand can be
tedious
– And hard to make look realistic

• Inverse kinematics can help
– But still leaves the null space degrees of

freedom unspecified

• It would be better if one could input
motion in a higher level fashion
– similar to how a puppeteer *guides* a

puppet

• One solution to this is motion capture,
where human movements are
captured by various types of cameras

Motion Capture
• Attach a number of markers to a person

• Light is emitted from a number of cameras and reflected back to the
cameras

• Compute the 3D location of the markers by inferring depth values

• From the marker locations, determine rigid body positions and joint
angles

– and thus the character motion

https://www.nbc.com/saturday-night-live/video/motion-capture/n13489

https://www.nbc.com/saturday-night-live/video/motion-capture/n13489
https://hotoffpress.files.wordpress.com/2012/05/ea-sports-motion-capture.jpg

Cameras
• Multiple cameras are set up to capture the performance space…

Motion Capture Stage
• Stages can be quite extravagant…

Facial Motion Capture
• A special camera attached to the actors head is often used

Facial Motion Capture
• Extensive secondary effects, including simulation, can be

incorporated on top of the motion capture

