Articulated Characters

Skeleton

- A skeleton is a framework of <u>rigid body</u> "bones" connected by articulated joints
- Used as an (invisible?) armature to position and orient geometry (usually surface triangles)

Joints

- Joints connect rigid bodies together, while allowing for relative motion between them
- Different types: hinge, ball-and-socket, saddle joint, sliding...
- A Joint has 0-6 degrees of freedom (DoF)
 - A 0-DoF joint rigidly connects two bodies into a single rigid body
 - A full 6-DoF joint doesn't do anything, and each of the bodies are free to move entirely independently
 - Typical joints are somewhere in-between (i.e. from 1-5 DoF)

Joints

- Rotational Joints
 - 1-DoF: a rotation matrix $Rot_{4x4}(\mathbf{n},\theta)$ defined by axis \mathbf{n} and angle θ
 - 2-DoF: multiplication of two sequential rotation matrices about different axes
 - 3-DoF: multiplication of 3 sequential rotation matrices about 3 different axes
 - Like Euler Angles, has the same problem of Gimbal lock
 - Better to specify a 3D rotation about an arbitrary axis (quaternion-style)
- Translational Joint
 - Can be specified to translate along any axis: (1-DoF, 2-DoF, 3-DoF)
 - Translation matrix $T_{4\times4}(\mathbf{v})$ is defined by the translation vector \mathbf{v}
- Compound Joint
 - Combines rotational and translational joints together

Examples

- rotation along one axis
- DoF=1

Saddle

- back and forth & up and down motion
- no "rotation"
- DoF=2

Hinge

 rotation along all 3 axes

Sliding

- sliding in a plane
- DoF=2

Joint Parameters

Offset

 A fixed translational displacement in the space of the parent body/joint, which acts as a pivot point for the joint's movement

Orientation

- Orientation of a joint's local coordinate system defined in the space of its parent body/joint (a matrix or quaternion)
- If using homogeneous coordinates, offset and orientation can be defined together in one 4x4 matrix

Joint Limits

- The minimum and maximum limits for each DOF that can be enabled or disabled independently
- E.g. the human elbow can bend to about +150 degrees and hyperextend back as much as -10 degrees

Joint Parameters

Offset: (4,0)

Orientation: Rot(30)

Limit: [-90,90]

Joint Hierarchies

Joints in Character Animation

- Joints are organized in a hierarchy
- The root is the position of the "base" of the skeleton
 - typically the backbone or pelvis
 - the root has all 6 DoF so it can be placed anywhere with any orientation
- Typically, other joints have only rotational DoFs
 - but in reality they have prismatic (translational) components as well

3 translational and 48 rotational DoFs

1 DoF: Knee

2 DoFs: Wrist

3 DoFs: Shoulder

Image from http://www.cc.gatech.edu/classes/AY2012/cs4496_spring/

State Vector

Hierarchical Representation

The articulated skeleton can be described by a

 The transformation of a joint is defined relative to its parent joint/body in the hierarchy

Forward Kinematics

Forward Kinematics

- Specify the base position/joint along with the other joint angles to prescribe motion
- To compute the final position and orientation of a joint in the world coordinate system, the transformations of all parent joints are combined together
 - Changing a parent joint affects *all* of its child bodies/joints
 - Changing a child joint does not affect any of its parent bodies/joints

Forward Kinematics

Recall: Transformations in World & Object Space

World Space: Read right to left

Object Space: Read left to right

 $P_{\text{world}} = T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P_{\text{local}}$

$$P_{\text{world}} = T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P_{\text{local}}$$

$$P_{\text{world}} = T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P_{\text{local}}$$

 $P_{\text{world}} = T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P_{\text{local}}$

$$P_{\text{world}} = T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P_{\text{local}}$$

 $P_{\text{world}} = T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P_{\text{local}}$

$$P_{\text{world}} = T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P_{\text{local}}$$

$$P_{\text{world}} = T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P_{\text{local}}$$

$$P_{\text{world}} = T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P_{\text{local}}$$

$$P_{\text{world}} = T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P_{\text{local}}$$

$$P_{\text{world}} = T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P_{\text{local}}$$

$$P_{\text{world}} = T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P_{\text{local}}$$

Pros and Cons

- The hierarchy is simple and efficient:
 - Specify the motion of the root node first
 - Then specify the poses of children one layer at a time
- Especially suitable for modeling motions in open space (without constraints)
 - E.g. flying birds, swimming fish...
- Has difficulties with interactions with the environment
 - Making a foot stay on the ground, fingers stay in contact with a cup, etc.

Forward Kinematics Equations

Given values for the joint DoF

$$\boldsymbol{\theta} = [\theta_1, \theta_2, ..., \theta_n]^T$$

Compute the end effectors in world space

$$e = [e_1, e_2, ..., e_m]^T$$

Forward Kinematics defines and uses the function

Inverse Kinematics

Inverse Kinematics Equations

Given the values for the end effectors in world space

$$e=[e_1, e_2, ..., e_m]^T$$

Compute the joint angles

$$\boldsymbol{\theta} = [\theta_1, \theta_2, ..., \theta_n]^T$$

Inverse Kinematics defines:

Inverse Kinematics

- Finding a solution for IK can be hard
 - one unique solution
 - infinite solutions (underconstrained)
 - no solution (overconstrained)
- Cannot be solved analytically in most cases
- Usually requires numerical methods
 - Jacobian iterative method
 - Optimization based methods

Linearization

• Use the secant approximation on $e=F(\theta)$:

$$e-e_0 = dF/d\theta (\theta-\theta_0)$$

- Here J=dF/dθ is the <u>Jacobian matrix</u> of partial derivatives
- J defines the instantaneous changes in the end effectors ${\bf e}$ relative to infinitesimal changes in the angles ${\bf \theta}$
- since $e=F(\theta)$ is nonlinear, J is only valid as an approximation near the current configuration θ_0

• Algorithm: replace e with e_{target} and solve for θ

Jacobian Matrix

For $\mathbf{e} = [\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_m]^T$ and $\mathbf{\theta} = [\theta_1, \theta_2, ..., \theta_n]^T$,

$$J = \begin{bmatrix} \frac{\partial F_1}{\partial \theta_1} & \frac{\partial F_1}{\partial \theta_2} & \cdots & \frac{\partial F_1}{\partial \theta_n} \\ \frac{\partial F_2}{\partial \theta_1} & \frac{\partial F_2}{\partial \theta_2} & \cdots & \frac{\partial F_2}{\partial \theta_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial \theta_1} & \frac{\partial F_m}{\partial \theta_2} & \cdots & \frac{\partial F_m}{\partial \theta_n} \end{bmatrix}$$

The column for the *j*th joint can be computed numerically as:
$$\mathbf{J}_{j} = \frac{F(\mathbf{\theta} + \mathbf{b}_{j}\delta\theta_{j}) - F(\mathbf{\theta})}{\delta\theta_{j}} \text{ where } \mathbf{b}_{j} = [0,0,...,1,...,0,0]^{T}$$

If the jth joint is a rotational joint with a single degree of freedom then the element corresponding to the ith end effector in the jth column of J can be computed analytically as:

$$\mathbf{J}_{ij} = \mathbf{v}_j \times (\mathbf{s}_i - \mathbf{p}_j)$$

where \mathbf{v}_i is the unit vector pointing along the axis of rotation, \mathbf{p}_i is the position of the joint, and \mathbf{s}_i is the position of the *i*th end effector

Iterative Solver

 $\mathbf{e}_{\mathbf{n}}$ – current end effector positions

e₊ – target end effector positions

Input:

```
\theta_0 – current DoFs
Algorithm:
while (|\mathbf{e}_t - \mathbf{e}_0| > \text{threshold})
   compute J; // Take many small steps and recompute J at each step
    \delta e = e_t - e_0; // Can scale this down to aim for smaller steps
    Solve J \delta \theta= \delta e to find \delta \theta;
   update the DoF with a small step of \alpha \delta \theta: i.e., \theta_0 += \alpha \delta \theta;
   update end effectors: \mathbf{e}_0 = F(\mathbf{\theta}_0);
```

Solving $\mathbf{J} \delta \mathbf{\theta} = \delta \mathbf{e}$

- J is not guaranteed to be invertible, and is typically not even a square matrix
- If **J** is <u>overdetermined</u>, multiply both sides by J^T , solve $J^T J \delta \theta = J^T \delta e$ for the least-squares solution (Householder is better!)
 - this gives the <u>unique solution too</u>, if it exists (of course, there are better methods if the solution is unique)
- If **J** is <u>underdetermined</u>, use pseudo inverse **J**⁺ to obtain $\delta \theta = J^+ \delta e$ for the minimum norm solution
 - The general solution of $\delta \theta$ = J⁺ δe can be written as $\delta \theta$ = J⁺ δe +(I- J⁺J)γ
 - The second term (I- J+J) represents the orthogonal projection to the null space of J
 - For any β = (I- J⁺J) γ we have J β =0, which means β will only affect the interior joints and causes no motion of the end effectors
 - This null space term can be used for some secondary goals, e.g. finding the most natural positions for the joints, balance, etc.
 - think about all the "styles" of walking
- Take CS205!

Pros and Cons

- Modeling poses of characters interacting with other objects
 - E.g., make sure fingers are exactly in contact with a cup
- Cannot get a solution if the target position is impossible (over-constrained)
 - Try to find a solution as close as possible in some sense, but this could look bad
- Hard to pick the best solution for an underconstrained system (null space matters!)
 - Requires additional constraints or optimizing some quantities

Question #1

LONG FORM:

- Summarize forward and inverse kinematics.
- Describe your ideas, so far, for your game.

SHORT FORM:

Give a name to each game we discuss in class.

Puppeteering

Puppeteering

- Specifying animation curves and splines for every degree of freedom (root and all angles) by hand can be tedious
 - And hard to make look realistic
- Inverse kinematics can help
 - But still leaves the null space degrees of freedom unspecified
- It would be better if one could input motion in a higher level fashion
 - similar to how a puppeteer *guides* a puppet
- One solution to this is <u>motion capture</u>, where human movements are captured by various types of cameras

Motion Capture

- Attach a number of markers to a person
- Light is emitted from a number of cameras and reflected back to the cameras
- Compute the 3D location of the markers by inferring depth values
- From the marker locations, determine rigid body positions and joint angles
 - and thus the character motion

https://www.nbc.com/saturday-night-live/video/motion-capture/n13489

Cameras

Multiple cameras are set up to capture the performance space...

Motion Capture Stage

Stages can be quite extravagant...

Facial Motion Capture

A special camera attached to the actors head is often used

Facial Motion Capture

 Extensive secondary effects, including simulation, can be incorporated on top of the motion capture

