Articulated Characters

Skeleton

e A skeleton is a framework of rigid body “bones”
connected by articulated joints

e Used as an (invisible?) armature to position and
orient geometry (usually surface triangles)

cfm

Joints

* Joints connect rigid bodies together, while allowing
for relative motion between them

e Different types: hinge, ball-and-socket, saddle joint,
sliding...
* A Joint has 0-6 degrees of freedom (DoF)

— A 0-DofF joint rigidly connects two bodies into a single
rigid body

— A full 6-DoF joint doesn’t do anything, and each of the
bodies are free to move entirely independently

— Typical joints are somewhere in-between (i.e. from 1-5
DoF)

Joints

* Rotational Joints
— 1-DoF: a rotation matrix Rot,,,(n,0) defined by axis n and angle 6

— 2-DoF: multiplication of two sequential rotation matrices about
different axes

— 3-DoF: multiplication of 3 sequential rotation matrices about 3
different axes
 Like Euler Angles, has the same problem of Gimbal lock
* Better to specify a 3D rotation about an arbitrary axis (quaternion-style)

* Translational Joint
— Can be specified to translate along any axis: (1-DoF, 2-DoF, 3-DoF)
— Translation matrix T,,(v) is defined by the translation vector v

e Compound Joint
— Combines rotational and translational joints together

Examples

* rotation along &-q * back and forth &
one axis sl up and down motion
* DoF=1

* no “rotation”
* DoF=2

\

7§41

Saddle

* sliding in a plane
* DoF=2

* rotation along
all 3 axes
* DoF=3

Ball-and-socket Sliding

Image from http://www.shockfamily.net/skeleton/JOINTS.HTML

Joint Parameters

e Offset

— A fixed translational displacement in the space of the parent
body/joint, which acts as a pivot point for the joint’s movement

* QOrientation

— Orientation of a joint’s local coordinate system defined in the
space of its parent body/joint (a matrix or quaternion)

— If using homogeneous coordinates, offset and orientation can be
defined together in one 4x4 matrix

 Joint Limits

— The minimum and maximum limits for each DOF that can be
enabled or disabled independently

— E.g. the human elbow can bend to about +150 degrees and
hyperextend back as much as —10 degrees

Joint Parameters

J2

Offset: (5,0)
Orientation: Rot(50)
Limit: [0,90]

J1

Offset: (0,6)
Orientation: Rot(-45)
Limit: None

onrld A

J3

Offset: (4,0)
Orientation: Rot(30)
Limit: [-90,90]

Joint Hierarchies

Joints in Character Animation

* Joints are organized in a hierarchy

* The root is the position of the “base” of the skeleton
— typically the backbone or pelvis

— the root has all 6 DoF so it can be placed anywhere with any orientation

* Typically, other joints have only rotational DoFs

— but in reality they have prismatic (translational) components as well

3 translational and 1 DoF: Knee 2 DoFs: Wrist 3 DoFs: Shoulder
48 rotational DoFs Image from http://www.cc.gatech.edu/classes/AY2012/cs4496_spring/

State Vector

qQq=2,Y, =, ‘9 ¢ g, ch? Cbtha Oths Hkna v a2

x,Yy,z,0,0,0 Rootloint

inait Pbiah s TRl

Hknee

Hanklea ¢ankle

Image from http://www.cc.gatech.edu/classes/AY2012/cs4496_spring/

Hierarchical Representation

* The articulated skeleton can be described by a
tree

— Nodes: joints
— Edges: bOneS Torso Pelvis

@ﬁm)(smmmm) (Hipt) (HpR)

" Head (EmnwL) (Eman) (Kneel) (P{neel:i)
O owristl) WristR) (_ﬁ.nkleL_) (;AlmleR)

* The transformation of a joint is defined —o

relative to its parent joint/body in the
hierarchy

Forward Kinematics

Forward Kinematics

» Specify the base position/joint along with the other joint angles
to prescribe motion
* To compute the final position and orientation of a joint in the
world coordinate system, the transformations of all parent
joints are combined together
— Changing a parent joint affects *all* of its child bodies/joints
— Changing a child joint does not affect any of its parent bodies/joints

a
V4
b

.

Forward Kinematics

Goal: Compute the position
of a local point P in the
world space

J2 P: In C.S. {X;,Y5}: (2,0)
Offset: (5,0)

Orientation: Rot(50)

J1
Offset: (0,6)
Orientation: Rot(-45)

onrld ,4 OX3

P: (2,0)

< N Offset: (4,0)
world Orientation: Rot(30)
In C.S. {Xworldlyworld}
\ In C.S. {x3,y1}
: t In C.S. {x,,y,} |
{ \ In C.S.1{x3,3}

=T(0,6)R(-45)T(5, O)R(50)T(4 O)R(BOiIJDPOCm

world

Recall: Transformations in World & Object Space

World Space: Read right to left Object Space: Read left to right

T(1,1) — R(45)

N/ N/

R(45) T(1,1)

R(45) T(1,1) I

In the View of World Space

onrld I
Xworld

=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P,.,,

world

In the View of World Space

onrld I

world

Xworld

=T(0,6)R(-45)T(5,0)R(50)T(4,0

)R(30)

PIocaI

In the View of World Space

onrld I

=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P,qc

world

In the View of World Space

world

=T(0,6)R(-45)T(5,0)

R(50)T(4,0)R(30)

IPIocaI

In the View of World Space

onrld /

world

=T(0,6)R(-45

)T(5,0)R(50)T(4,0)R(30)

IPIocaI

In the View of World Space

world

=T(0,6)

JR(-45)T(5,0)R(50)T(4,0)R(30)

IPIocaI

In the View of World Space

world™

T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)

PIocaI

In the View of Object Space

onrld {

Xworld

=T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P,.,,

world

In the View of Object Space

T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P, o,

world™

In the View of Object Space

world™

T(0,6)R(-45

T(5,0)R(50)T(4,0)R(30)P),y

In the View of Object Space

T(0,6)R(-45)T(5,0]R(50)T(4,0)R(30)P, o,

world™

In the View of Object Space

T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)P, o,

world™

In the View of Object Space

world™

T(0,6)R(-45)T(5,0)R(50)T(4,0]

’R(aO)PIocaI

In the View of Object Space

T(0,6)R(-45)T(5,0)R(50)T(4,0)R(30)

PIocaI

Pros and Cons

* The hierarchy is simple and efficient:
— Specify the motion of the root node first

— Then specify the poses of children one layer at a time

e Especially suitable for modeling motions in open space
(without constraints)

— E.g. flying birds, swimming fish...
 Has difficulties with interactions with the environment

— Making a foot stay on the ground, fingers stay in contact with
a cup, etc.

Forward Kinematics Equations

Given values for the joint DoF
6=[6,,06,,..,06,.]"
Compute the end effectors in world space
e=[e,;, e,, ..., e.]"
Forward Kinematics defines and uses the function

e=F(0)

Given 9=[91, 92, e3]T
Find e=[e, , e,]"

(eyez) =F (61; 62; 93)

Inverse Kinematics

Inverse Kinematics Equations

e Given the values for the end effectors in world
space

e=[e;, e,, ..., e,]
* Compute the joint angles
e=[6,,0,, ..., 06,]"

* |Inverse Kinematics defines:
0 =G(e)

Given e=[e, , &,]"
Find 6=[6,, 6,, 6,]"
(91; ez; 93) = G(elrez)

Inverse Kinematics

* Finding a solution for IK can be hard

— one unique solution

— infinite solutions (underconstrained)

— no solution (overconstrained)
* Cannot be solved analytically in most cases
e Usually requires numerical methods

— Jacobian iterative method

— Optimization based methods

Two solutions [8,, 8,, 6,]" for constrained [e, , e,]"

Linearization

Use the secant approximation on e=F(0):
e-e,= dF/d0 (0-6,)
Here J=dF/d0 is the Jacobian matrix of partial derivatives

J defines the instantaneous changes in the end effectors e
relative to infinitesimal changes in the angles 0

since e=F(0) is nonlinear, J is only valid as an approximation
near the current configuration 6,

Algorithm: replace e with e, .., and solve for 8

. : ' oF, OF oF
Jacobian Matrix T
oF, oF, oF,
d For e=[el, le Ly, em]T and e=[el' e2' e en]T’ J= a91 a‘92 a—Hn
oF OF oF

06, 96, 06,

* The column for the jth joint can be computed numerlcally as:
_F(0+b;00,) - F(0) where b; =[0,0,... J .,0,0]"
i 50,

J

e |fthe jth joint is a rotational joint with a single degree of freedom then the element
corresponding to the ith end effector in the jth column of J can be computed

analytically as:
Jiy=V,;x(s;—p;)

where v; is the unit vector pointing along the axis of rotation, p; is the position of
the joint, and s; is the position of the ith end effector

Iterative Solver

Input: e, — current end effector positions

e, — target end effector positions
8, — current DoFs

Algorithm:

while(|e,—e,| > threshold){
compute J; // Take many small steps and recompute J at each step

de= e, - e,; // Can scale this down to aim for smaller steps
Solve J 60= 6e to find 60;

update the DoF with a small step of a60: i.e., 8,+= a66;
update end effectors: e, =F(0,);

Solving J 60= de

* Jis not guaranteed to be invertible, and is typically not even a square matrix

e |fJis overdetermined, multiply both sides by J7, solve JTJ 60=J" §e for the
least-squares solution (Householder is better!)

— this gives the unique solution too, if it exists (of course, there are better
methods if the solution is unique)

* IfJis underdetermined, use pseudo inverse J* to obtain 60=J* e for the
minimum norm solution

— The general solution of 60=J* 6e can be written as
50=J* be+(I- J*))y

— The second term (I- J*J) represents the orthogonal projection to the null
space of J

— For any B= (I- J*J)y we have J B=0, which means B will only affect the
interior joints and causes no motion of the end effectors

— This null space term can be used for some secondary goals, e.g. finding
the most natural positions for the joints, balance, etc.

* think about all the “styles” of walking
* Take CS205!

Pros and Cons

* Modeling poses of characters interacting with other
objects
— E.g., make sure fingers are exactly in contact with a cup

* Cannot get a solution if the target position is
impossible (over-constrained)

— Try to find a solution as close as possible in some sense,
but this could look bad
* Hard to pick the best solution for an under-
constrained system (null space matters!)

— Requires additional constraints or optimizing some
guantities

Question #1

LONG FORM:
e Summarize forward and inverse kinematics.

* Describe your ideas, so far, for your game.

SHORT FORM:
* Give a name to each game we discuss in class.

Puppeteering

Puppeteering

Specifying animation curves and
splines for every degree of freedom
(root and all angles) by hand can be
tedious

— And hard to make look realistic

Inverse kinematics can help

— But still leaves the null space degrees of
freedom unspecified

It would be better if one could input
motion in a higher level fashion

— similar to how a puppeteer *guides™* a
puppet
One solution to this is motion capture,
where human movements are
captured by various types of cameras

Motion Capture

Attach a number of markers to a person

Light is emitted from a number of cameras and reflected back to the
cameras

Compute the 3D location of the markers by inferring depth values

From the marker locations, determine rigid body positions and joint
angles

— and thus the character motion

https://www.nbc.com/saturday-night-live/video/motion-capture/n13489

https://www.nbc.com/saturday-night-live/video/motion-capture/n13489
https://hotoffpress.files.wordpress.com/2012/05/ea-sports-motion-capture.jpg

Cameras

Multiple cameras are set up to capture the performance space...

“ 1 |
AN ' .
.
S
2N
o
S

Motion Capture Stage

Facial Motion Capture

* A special camera attached to the actors head is often used

Facial Motion Capture

* Extensive secondary effects, including simulation, can be
incorporated on top of the motion capture

