
Motion Capture & Simulation



Motion Capture



Character Reconstructions



Joint Angles
• Need 3 points to compute a rigid body coordinate frame

– 1st point gives 3D translation, 2nd point gives 2 angles, 3rd point gives the 
last angle 

– Label markers by hand, so the system knows which three points to use 
for each rigid body/bone

– If markers disappear (become occluded), have to re-label them after 
they show back up (extensive manual intervention)

• Once both rigid bodies associated with a joint are identified, the 
joint angle can be determined

• Note: Due to errors, neighboring bones may disagree in the 
location of the joint 



MoCap Hardware



Mechanical Motion Capture
• Actors wear sensorized mechanical joints that directly measure the rotation 

of human joints
• Reduces manual intervention, but expensive and cumbersome



Wiimote
• Wiimote optical sensor images LEDs

– Distance between the LEDs on the is bar fixed

– Distance between imaged LEDs varies with depth

– These two distances allow one to calculate how far away the 
remote is from the LED bar

• The angle of the remote is calculated from the angle 
the imaged LEDs make on the optical sensor 



Inertial Tracking
• Wiimote (accelerometer) and Wiimotion Plus (gyroscope)
• Actors can also wear accelerometers and gyroscopes
• Accelerometers measure linear acceleration

– Solve the usual system of ODEs with known accelerations to 
obtain velocity and position (errors cause drift)

• Gyroscope sensors measure the angular velocity
– Solve the usual ODE to obtain orientation (errors cause drift)



Magnetic Motion Capture
• Place emitters that produce three orthonormal magnetic fields
• Actors wear magnetic field detectors/receivers

– Receivers detect the field strength, which gets weaker based on distance

• In addition to the accelerometer and gyroscope, the PSMove uses 
a magnetometer (and the Earth’s magnetic field) to correct for drift 
from solving ODEs
– Also uses a separate optical camera that measures the location, size, and 

orientation of the sphere (which becomes an ellipse when projected)



Marker-less Motion Capture
• Actors wear nothing!

• Use computer vision to reconstruct the person
– Do a scan of a person ahead of time, and identify key points

– Match key points between the video and the scan

• Microsoft Kinect  - inexpensive depth sensor (from 
structured light)



MoCap Data



Mocap Output
• Root position/orientation vs. time
• Angles vs. time for all joints
• For example…



Using Mocap
• Mocap data can be mapped to a CG avatar anywhere in the scene by adding an 

arbitrary translation to the root position vs. time graph

– Subsequently the avatar moves as the mocap data prescribes
• Ignoring errors in the process

• But what if, for example, we have mocap data for walking straight and prefer to 
follow a curved path?

– Could capture mocap data for every possible curved path, but that requires a 
lot of data

– Similarly, could capture mocap data for every possible speed of movement

– One also needs data for transitions between different radii of curvature, 
transitions between different speeds, and all combinations of curvature and 
speeds

– Even more data is required for characters of different heights, since the angles 
and angles versus time will be different

– Etc.

• Thus, many methods exist for using mocap data which doesn’t exactly fit the task at 
hand



Mocap Examples

https://www.youtube.com/watch?v=BKkKTcHL5ow

https://www.youtube.com/watch?v=BKkKTcHL5ow


Modifying MoCap Data



Inverse Kinematics

• Suppose a foot misses the ground, or a hand fails to 
touch a cup

• Select a key frame in the mocap that has such an 
issue

• Use IK to adjust the end effector to meet the 
desired goal

• Treat the null space by minimizing the change in 
joint angles required to meet the goal

• Finally use this new key frame data to (smoothly?) 
modify the surrounding mocap data (angle vs. time 
graphs)



Inverse Kinematics
• Use various 1D interpolation techniques (e.g. 

splines) to ensure that the new function:

– goes through the new key pose

– modifies the original function as little as possible

– remains smooth

– Etc.



Motion Editing/Warping
• More generally one can specify new key frames 

to serve any purpose (motion editing)

• And then modify the 1D functions of angle vs. 
time to respect the newly edited key frames 
(motion warping)



Spacetime Constraints
• Instead of specifying key frames, specify a number of constraints 

or goals throughout the time of the motion 
• Then use constrained space/time optimization to find a new 

motion
• The optimization penalizes missing goals as well as the distance 

from the initial mocap data
• Besides goals for end effectors, more general constraints may 

include energy minimization, grace, style, efficiency, quality, etc.
• Expensive!



MoCap Transitions



Motion Transitions
• Typically, an avatar executes many different kinds of motion

• Need ways to transition from one motion type to another



Motion Blending
• Given two motions, say walking and running, how does one transition from 

walking to running?
• Use interpolation between the two motions: 

𝑓 𝑡 = 𝐴(𝑡)(1 − 𝑠(𝑡)) + 𝐵(𝑡)𝑠(𝑡)
– A(t) is the angle vs. time graph for walking
– B(t) is the angle vs. time graph for running
– f(t) is a new angle versus time graph that transitions from walking to running
– s(t) starts at 0 (walking) and at some point transitions to a value of 1 (running)

• Works ok in some cases
– Timings can be off, can look odd



Motion Graphs
• Automatically look for acceptable transition points between two 

separate motions
• Then cut, splice, and blend…



MoCap & Simulation



Simulation
• Kinematically following mocap data gives the character 

infinite mass and inertia
• A little bit of physics can be added for realism…



Interrupting Motion Capture
• If a character is given a small push, one can briefly simulate a 

reaction to collisions, etc., treating the character with finite 
mass

• After such a treatment, the character’s state no longer 
matches that of the motion capture functions of angle vs. 
time

• Need to somehow recover
• Search for the closest motion capture frame to the current 

state and perform a motion graph transition



PD Control
• When an object is perturbed, keep targeting the current 

motion capture frame using a mass spring style formulation

• This gives a somewhat plausible transition back to the mocap
angle vs. time functions from a perturbed state

• Apply a torque proportional to the difference between the 
current state and the target state
– Along with an additional damping torque proportional to the 

difference between the time derivatives (“angular velocities”)

• The larger the difference in the states, the bigger the torque

• The coefficients can be adjusted to more tightly or loosely 
follow the motion capture data

T = 𝑐𝑃(𝑞 − 𝑞𝑑) + 𝑐𝐷( ሶ𝑞 − ሶ𝑞𝑑)



• The avatar can be simulated as an articulated rigid body

• Whether only for a brief collision, or for a longer period of time (e.g. 
falling down stairs)

• The articulated rigid body simulation would typically not be 
influenced by the motion capture data
– However, one could add a PD Control torque to the articulated rigid body simulation (as 

a non-physical, non-momentum conserving torque) in order to somewhat include the 
effects of mocap data in the simulation

Rag Dolls



Question #1

LONG FORM:
• Summarize motion capture technology.
• Answer the short form questions.

SHORT FORM:
• Identify the main avatar in your game.
• How will the way it looks be compelling or relevant 

to the game? 
• How will the way it moves be compelling or relevant 

to the game? 



Articulated Rigid Bodies



Davy Jones



More than just characters…



More than just characters…



Maximal vs. Reduced Coordinates
• Broadly speaking, there are two ways of going about 

simulating articulated rigid bodies

• Maximal (Cartesian) Coordinates
– Simulate the full six degrees of freedom for each rigid body

– Use some auxiliary method to enforce joint constraints

– Contact, collision, friction, etc. are straightforward to include

• Reduced (Generalized) Coordinates
– Remove any degrees of freedom that are constrained away by 

joints
• write new differential equations for the position of the root and the joint 

angles)

– Faster to simulate, since there are less degrees of freedom

– Less intuitive equations, and less intuitive to incorporate contact, 
collision, friction and other unanticipated forces (but great for 
robots, since they’re not supposed to have unanticipated forces) 



Enforcing Constraints
• Consider constraining two separate rigid bodies together at a point
• Each of the rigid bodies describes this point in its own object space
• Thus we know the world space location of the two points that are 

supposed to be coincident
• The goal is to constrain them to actually be coincident
• For example one could attach a zero length spring connecting 

these two points, and simulate the effect of the spring forces on 
the rigid bodies  



Fixing Drift
• Unless the zero length spring has infinite stiffness, which is 

difficult to simulate, the two points will drift somewhat apart
• This drift can be fixed at render time by projecting the current 

state of the rigid bodies into an acceptable joint state
– For example, each of the two bodies can be translated along the 

segment connecting their constrained points until those points are 
coincident 
• In the case of a joint hierarchy one should only translate the rigid body 

further from the root

– A similar procedure can be employed for constraints on angles 
(which can be enforced using angular springs)

• Note: this may cause other visual issues such as 
interpenetrations

• One could maintain this new projected state as the new 
simulation state as well
– Although that then violates conservation of linear and angular 

momentum



Impulses for ARBs



Impulses
• Instead of using a spring to constrain the rigid bodies, one could use 

collision-style impulses

• Recall, an equal and opposite impulse is applied to each body using 
their impulse factors:

𝑢1
𝑛𝑒𝑤 = 𝑢1 + 𝐾1𝑗 and   𝑢2

𝑛𝑒𝑤 = 𝑢2 − 𝐾2𝑗

• The relative velocity 𝑢𝑟𝑒𝑙 = 𝑢1 − 𝑢2 should be identically zero after 
applying the impulse

• Solve 𝑢𝑟𝑒𝑙 + 𝐾𝑇𝑗 = 0 to find the impulse 𝑗

• The impulse is typically applied at the midpoint of the segment 
connecting the two points one is trying to keep coincident

• Unlike a spring that will fix the velocity 
and position, the impulse only fixes the 
velocity

• Thus, any position errors persist (creating 
drift that needs to be addressed)



Impulses for Drift
• During the position update, one could apply impulses to 

velocities in order to obtain velocities that close the gap
– That is, evolving the rigid bodies using these velocities results in 

the two points moving to become coincident (eliminating drift)

– Still use 𝑢1
𝑛𝑒𝑤 = 𝑢1 + 𝐾1𝑗 and   𝑢2

𝑛𝑒𝑤 = 𝑢2 − 𝐾2𝑗

– The new relative velocity 𝑢𝑟𝑒𝑙
𝑛𝑒𝑤 is not set to zero, but rather to the 

correct velocity to close the gap

– Solve 𝑢𝑟𝑒𝑙 + 𝐾𝑇𝑗 = 𝑢𝑟𝑒𝑙
𝑛𝑒𝑤 to find the impulse 𝑗

– Points on the rigid body move on nonlinear paths, since rigid 
bodies rotate and translate

– Thus, finding the correct relative velocity and impulse is difficult

– Requires a nonlinear solver, iterations, etc., but is doable…

• After updating the position to remove drift, new impulses are 
needed in order to make the relative velocity zero as well (as 
per the last slide)



Angular Impulses for ARBs



Angular Impulse

Recall: Equations for one body with collision location 𝑟𝑝
with respect to its center of mass:

𝑀 ҧ𝑣𝑛𝑒𝑤 = 𝑀 ҧ𝑣 + 𝑗
𝐼𝜔𝑛𝑒𝑤 = 𝐼𝜔 + 𝑟𝑝

∗𝑗

• Let the point of application (and thus 𝑟𝑝) go to infinity 
while 𝑗 goes to zero with 𝑗τ = 𝑟𝑝

∗𝑗 remaining finite:
𝑀 ҧ𝑣𝑛𝑒𝑤 = 𝑀 ҧ𝑣 + 0
𝐼𝜔𝑛𝑒𝑤 = 𝐼𝜔 + 𝑗τ

• This angular impulse only effects the angular 
momentum and not the linear momentum:

𝑀 ҧ𝑣𝑛𝑒𝑤 = 𝑀 ҧ𝑣 + 𝑗
𝐼𝜔𝑛𝑒𝑤 = 𝐼𝜔 + 𝑟𝑝

∗𝑗 + 𝑗τ



Angular Impulse

• The pointwise velocity gets additionally modified by the 
angular impulse:

𝑢𝑝
𝑛𝑒𝑤 = ҧ𝑣𝑛𝑒𝑤 + 𝜔𝑛𝑒𝑤∗

𝑟𝑝 = ҧ𝑣𝑛𝑒𝑤 + 𝑟𝑝
∗𝑇𝜔𝑛𝑒𝑤

𝑢𝑝
𝑛𝑒𝑤 = ҧ𝑣 +

𝑗

𝑀
+ 𝑟𝑝

∗𝑇 𝜔 + 𝐼−1𝑟𝑝
∗𝑗 + 𝐼−1𝑗τ

𝑢𝑝
𝑛𝑒𝑤 = 𝑢𝑝 + 𝐾𝑗 + 𝑟𝑝

∗𝑇𝐼−1𝑗τ
• Similarly for the angular velocity:

𝜔𝑛𝑒𝑤 = 𝜔 + 𝐼−1𝑟𝑝
∗𝑗 + 𝐼−1𝑗τ

• This gives us 2 vector valued equations for 𝑢𝑝
𝑛𝑒𝑤 and 𝜔𝑛𝑒𝑤 in 

2 vector valued unknowns 𝑗 and 𝑗τ
• Thus we can target any velocity and angular velocity, 

constraining the joint together while also controlling its 
angle/rotation



Angular Impulse
• In addition to the relative velocity 𝑢𝑟𝑒𝑙 = 𝑢1 − 𝑢2 at the joint 

center, also consider the relative angular velocity 𝜔𝑟𝑒𝑙 = 𝜔1 −
𝜔2

• Equal and opposite impulses applied to each body:

𝑢1
𝑛𝑒𝑤 = 𝑢1 + 𝐾1𝑗 + 𝑟1

∗𝑇𝐼1
−1𝑗τ

𝑢2
𝑛𝑒𝑤 = 𝑢2 − 𝐾2𝑗 − 𝑟2

∗𝑇𝐼2
−1𝑗τ

• Equal and opposite angular impulses applied to each body:
𝜔1
𝑛𝑒𝑤 = 𝜔1 + 𝐼1

−1𝑟1
∗𝑗 + 𝐼1

−1𝑗τ
𝜔2
𝑛𝑒𝑤 = 𝜔2 − 𝐼2

−1𝑟2
∗𝑗 − 𝐼2

−1𝑗τ
• These equations can be combined and rewritten as:

𝑢𝑟𝑒𝑙
𝑛𝑒𝑤 = 𝑢𝑟𝑒𝑙 + 𝐾𝑇𝑗 + ( 𝑟1

∗𝑇𝐼1
−1 + 𝑟2

∗𝑇𝐼2
−1) 𝑗τ

𝜔𝑟𝑒𝑙
𝑛𝑒𝑤 = 𝜔𝑟𝑒𝑙 + (𝐼1

−1𝑟1
∗ + 𝐼2

−1𝑟2
∗)𝑗 + (𝐼1

−1 + 𝐼2
−1) 𝑗τ

• So given a desired relative velocity 𝑢𝑟𝑒𝑙
𝑛𝑒𝑤 and a desired relative 

angular velocity 𝜔𝑟𝑒𝑙
𝑛𝑒𝑤, we can solve for the impulse 𝑗 and angular 

impulse 𝑗τ


