
Skinning



Skinning (or Enveloping)
• Envelop the underlying skeleton with a surface 

representation (triangle mesh, implicit surface), or skin, that 
conveys the appearance of the character and deforms with 
the underlying skeleton



Faces



Facial Animation

• Create a neutral resting shape 
for the face

• Then create a number of key 
poses for different expressions:
• E.g. smile, frown, pucker, mouth 

open, jaw open

• Each shape is a deformed 
version of the skin in a target 
expression

• Interpolating between key 
shapes gives animation



Face Model Creation



A Stanford Ph.D. student

http://physbam.stanford.edu/~fedkiw/images/efty_01.jpg


Abraham Lincoln



President Obama

https://youtu.be/4GiLAOtjHNo

https://youtu.be/4GiLAOtjHNo


Yoda



Kong: Skull Island (March 10, 2017)

Matthew Cong King Kong

https://www.youtube.com/watch?v=2onxgmKT1fw

https://www.youtube.com/watch?v=2onxgmKT1fw


Expression Shapes
• Besides scanning in the neutral pose, one needs to scan in 

shapes for every desired expression 

• Alternatively, a modeler can deform vertices by hand to 
create various expression shapes



Interpolation



Degrees of Freedom
• Interpolation between various poses is carried out on a 

node by node basis 

• Thus, the neutral shape and every expression shape is 
created with the same triangles
• and with the triangle vertices corresponding in a one to one 

fashion

• This works/looks better if each vertex corresponds to a fixed 
position on the skin surface of the character

• If there are m vertices, then the i-th shape is be given by:

𝑥1𝑖
𝑥2𝑖
⋮

𝑥𝑚𝑖



Interpolation
• Obtain a new shape by linearly interpolating between two 

key shapes

.28

𝑥11
𝑥21
⋮

𝑥𝑚1

+ .72

𝑥12
𝑥22
⋮

𝑥𝑚2

= resulting shape



Animation

• Vary the interpolation weights (⍺,1-⍺) over time 



Animation

• Vary the interpolation weights (⍺,1-⍺) over time 



Shape Matrix

• Consider the case of 𝑛 key shapes (with 𝑚 vertices in each)

• Concatenate the 𝑛 column vectors to form a shape matrix:

𝑥11
𝑥21
⋮

𝑥𝑚1

,

𝑥12
𝑥22
⋮

𝑥𝑚2

…

𝑥1𝑛
𝑥2𝑛
⋮

𝑥𝑚𝑛

=

𝑥11 𝑥12 ⋯ 𝑥1𝑛
𝑥21 𝑥22 ⋯ 𝑥2𝑛
⋮ ⋮ ⋱ ⋮

𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛

• Note that one of the key shapes needs to be the face in a 
neutral/rest pose



Interpolation

• A new shape is computed by multiplying the shape matrix 
with a vector of interpolation weights:

𝑥11 𝑥12 ⋯ 𝑥1𝑛
𝑥21 𝑥22 ⋯ 𝑥2𝑛
⋮ ⋮ ⋱ ⋮

𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛

𝛼1
𝛼2
⋮
𝛼𝑛

=

𝑥1
𝑥2
⋮
𝑥𝑚

• Every vector of interpolation weights Ԧ𝛼 gives a new set of 
vertex positions (i.e., a new shape) Ԧ𝑥

• Animate the vector of interpolation weights Ԧ𝛼 in order to 
animate the shape of the face



Displacements
• Alternatively, one could construct a displacement matrix 

consisting of displacements from the neutral/rest pose

𝛿𝑥11 𝛿𝑥12 ⋯ 𝛿𝑥1𝑛−1
𝛿𝑥21 𝛿𝑥22 ⋯ 𝛿𝑥2𝑛−1
⋮ ⋮ ⋱ ⋮

𝛿𝑥𝑚1 𝛿𝑥𝑚2 ⋯ 𝛿𝑥𝑚𝑛−1

𝛼1
𝛼2
⋮

𝛼𝑛−1

=

𝛿𝑥1
𝛿𝑥2
⋮

𝛿𝑥𝑚

• In this case, the neutral shape 𝑥0 is not a column in the matrix (it 
would be a column of all zeroes)

• The result of the matrix multiplication is added to the neutral 
shape to obtain the new shape:

Ԧ𝑥 = 𝑥0 + 𝛿𝑥

• The two approaches can be shown to be equivalent, if the 
weights have the property: σ1

𝑛𝛼𝑖 = 1



Facial Mocap



Facial Motion Capture

• Instead of animating Ԧ𝛼, one can compute Ԧ𝛼 via mocap

• Given a mocap frame, compute Ԧ𝛼 such that the resulting 
shape matches the mocap data as close as possible
• E.g. add markers to the neutral shape; determine Ԧ𝛼 such that the 

displaced location of those markers agrees with the displaced 
mocap markers

• Increasing the number of shapes allows for the actor’s 
performance to be more closely matched
• An insufficient number of shapes can cause details in the actor’s 

performance to be lost

• Finally, Ԧ𝛼 can be remapped to another creature
• as long as the column vectors of the shape/displacement matrices 

have corresponding meanings from the actor shape matrix to the 
creature shape matrix





Body



A Different Approach
• A similar process could be carried out for the body

• i.e. create a shape matrix and interpolate

• But, the shape of the body is highly dependent on the angles of 
joints, so one can bootstrap the interpolation weights Ԧ𝛼 from the 
joint angles
• The joint angles do miss some shape information such as whether a 

muscle is being intentionally flexed

• Note: the Ԧ𝛼 in facial animation can be bootstrapped in a similar fashion 
using the angle of the jaw joint and contractions of various facial muscles

• Many parts of the body are relatively disjoint from each other, so 
we expect the displacement matrix to be sparse (but the shape 
matrix is not sparse)

• Because of these considerations, we approach skinning the body 
in a slightly different manner
• While noting that it still highly depends on shapes and interpolation



Joint Angles Framework



Summary
• Decompose the entire skin (for the whole character)  into 

smaller pieces, and place a portion of the skin into the 
object space of each bone
• The pieces may overlap, i.e. multiple bones may share the same 

skin vertices

• Given a set of joint parameters 𝜃

• Let 𝑇𝑖(𝜃) represent the transformation that moves bone 
𝑖 from its object space to world space

• As the joint parameters change and the bones move in 
world space, calculate where the skin vertices are located in 
world space as well using 𝑇𝑖(𝜃)

• Skin vertices which exist in the object space of multiple 
bones require some sort of interpolation or averaging



Rigid Skinning

• Each skin vertex is assigned to exactly one bone
• For example, the skin for the upper arm would be 

assigned to a different bone than the skin for the 
forearm

• Use the transform of the associated bone to position 
each vertex of the skin in world space:
• Consider a vertex 𝑗 with position 𝑣𝑗 in the object space of 

the 𝑖th bone with transformation 𝑇𝑖
• Then, the world space position of vertex 𝑗 is given by

𝑣𝑗
′ = 𝑇𝑖𝑣𝑗

• As the skeleton moves, 𝑇𝑖 changes and the vertex 
positions of the skin change as well



Rigid Skinning
• Unwanted discontinuities form along the boundaries where 

neighboring skin vertices are assigned to different bones



Linear Blend Skinning



Linear Blend Skinning

• Remove the discontinuity by linearly 
blending vertices near the joint

• Assign each skin vertex to more than one 
bone
• Note: 𝑣𝑗

𝑖 will have different coordinates in 
different rigid body object spaces

• Each bone 𝑖 to which vertex 𝑣𝑗 belongs to 
is assigned a nonzero weight 𝑤𝑖𝑗

• The world space position of the vertex is 
computed as the weighted average of the 
world space positions obtained from 
each bone via rigid skinning:

𝑣𝑗
′ = ෍

𝑖

𝑤𝑖𝑗𝑇𝑖𝑣𝑗
𝑖



Normals & Tangents
• Normal and tangent vectors of the surface mesh (important 

for rendering/collisions) are blended as well:

𝑛𝑗
′ = ෍

𝑖

𝑤𝑖𝑗 𝑇𝑖
−𝑇𝑛𝑗

𝑖

𝑡𝑗
′ = ෍

𝑖

𝑤𝑖𝑗 𝑇𝑖𝑡𝑗
𝑖

• Normalize 𝑛𝑗
′ and 𝑡𝑗

′ if unit length is required



Weights
• Weights for a vertex should be sparse

• E.g., if the angle of the elbow joint is changed, the skin for the leg 
shouldn’t deform

• Nonzero weights should be localized to nearby bones

• Sparse weights allow for fast evaluation
• Typically at most four non-zero weights per vertex (at most four 

bones can deform a vertex)

• Weights should be smooth to avoid discontinuities
• Often chosen with a smooth falloff based on distance to a 

particular bone

• Weights should be independent of mesh resolution
• So that subdividing the mesh doesn’t require recomputing weights

• Constrain the weights to be convex (i.e. σ𝑖𝑤𝑖𝑗 = 1,𝑤𝑖𝑗 ≥ 0) 
to avoid undesired scaling and extrapolation artifacts



Specifying Weights
• Manual Approach: 

• Hand-tune weights in order to obtain the best look

• Intractable to individually modify the weights for each 
vertex in a large mesh

• Various painting tools facilitate weight specification 

• Automatic Approach: 

• Use an algorithm to calculate weights for each vertex and 
all its associated bones 

• E.g., based on a “distance” metric from vertices to 
bones

• Automatically generated weights are often additionally 
modified by an artist for higher visual fidelity



Specifying Weights: Pinocchio
• System for automatically rigging and animating 3D 

characters

• Solves a Poisson equation (PDE!) for each bone with 
appropriate boundary conditions to obtain smoothly varying 
weights

• Can be used to rig and skin your own characters

• Available from MIT:
http://www.mit.edu/~ibaran/autorig/pinocchio.html

http://www.mit.edu/~ibaran/autorig/pinocchio.html


Specifying Weights: Geodesic Voxel Binding
• Automatic approach for specifying weights:

1. Voxelize the interior and boundary of the skin mesh for a rest pose

2. For each bone (left leg bone shown below), compute the geodesic 
distance from that bone to the center of each voxel using the Fast 
Marching Method (see rigid body lecture)

3. For each skin vertex, interpolate distance from the surrounding voxels

4. Use this distance in a falloff function to determine the weight for each 
vertex



Artifacts…
• Linear blend skinning has issues when the joint angles are large 

or when a bone undergoes a twisting motion
• “bow tie” or “candy wrapper” effect
• mesh loses volume

• Linearly blending the matrix representations of rigid body 
transformations does not (in general) result in a matrix that 
represents a rigid body transformation



Dual Quaternion Skinning



Dual Numbers
• A dual number has the form ො𝑎 = 𝑎0 + 𝜖𝑎𝜖

• where 𝑎0 and 𝑎𝜖 are real numbers 

• and 𝜖 satisfies 𝜖2 = 0

• Many arithmetic operations are defined for dual numbers

• such as multiplication, division, conjugation, and the 
square root

• Dual numbers can be represented as 2x2 matrices:

𝜖 =
0 1
0 0

and 𝑎𝐼 + 𝑏𝜖 =
𝑎 𝑏
0 𝑎

• The sum and product of dual numbers can then be 
calculated with matrix addition and multiplication



Dual Quaternions
• A dual quaternion has the form ො𝑞 = 𝑞0 + 𝜖𝑞𝜖

• where 𝑞0 and 𝑞𝜖 are standard quaternions

• If 𝑞𝜖 = 0, the dual quaternion reduces to a standard 
quaternion 𝑞0 (and represents a rotation)

• Dual quaternions can be used to represent a translation Ԧ𝑡 =
(𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧) as

Ƹ𝑡 = 1 +
𝜖

2
𝑡𝑥i + 𝑡𝑦j + 𝑡𝑧k

• A rigid body transformation with rotation 𝑞0 and translation 
Ƹ𝑡 , is represented by the dual quaternion

Ƹ𝑡𝑞0 = 1 +
𝜖

2
𝑡𝑥i + 𝑡𝑦j + 𝑡𝑧k 𝑞0



Skin Space
• Consider a skin space, where the full character skin is placed 

in its rest pose

• Each bone is placed into skin space and aligned with the 
character by a rigid transformation 𝐵𝑖

• A vertex 𝑣𝑗 in skin space can be placed into the object space 
of a rigid body via

𝑣𝑗
𝑖 = 𝐵𝑖

−1𝑣𝑗

• Thus, the full formula for linear blend skinning is

𝑣𝑗
′ = ෍

𝑖

𝑤𝑖𝑗𝑇𝑖𝐵𝑖
−1𝑣𝑗

• The fact that  σ𝑖𝑤𝑖𝑗𝑇𝑖𝐵𝑖
−1 is not a rigid body transform 

leads to some of the issues with linear blend skinning



Dual Quaternion Skinning
• Convert each composite transformation matrix 𝑇𝑖𝐵𝑖

−1 into a unit dual 
quaternion ො𝑞𝑖

• Then compute a normalized linearly blended dual quaternion ො𝑞𝑗 using 
the weights

ො𝑞𝑗 =
σ𝑖𝑤𝑖𝑗 ො𝑞𝑖

σ𝑖𝑤𝑖𝑗 ො𝑞𝑖
• This blended unit dual quaternion is guaranteed to represent a rigid 

body transformation

• Transform ො𝑞𝑗 back into a transformation matrix ෠𝑇𝑗 and calculate the 
deformed skin vertex position as 𝑣𝑗

′ = ෠𝑇𝑗𝑣𝑗



Question #1

LONG FORM:
• Summarize both face skinning and body skinning.
• Answer the short form questions.

SHORT FORM:
• Pitch your game:

• Start with a one sentence summary.
• Why is it cool?
• What makes it fun to play?
• What makes it interesting technically?



Other Methods



Pose Space Deformers
• Pose space deformation considers the entire skeleton including the 

joint parameters instead of only the locations of the bones in space

• Sculpt a deformed version of the skin for a number of different poses
• More similar to faces in this sense…

• Perform non-uniform interpolation between sculpted poses to 
generate a new deformed skin for a non-sculpted pose

• Artist can tune the influence of each sculpted pose to nearby poses

Linear Blend Skinning Pose Space Deformation



Physics Based Skinning

• Embed the skeleton into a 
volume (e.g. tetrahedral mesh) 
which can be simulated as a 
soft body flesh driven by the 
animated skeleton



Quasistatics
• Each bone is treated as a kinematic rigid body

• A tetrahedralized volume is used for the flesh 
• mass/spring or finite elements

• The nodes inside/near the rigid body bones are constrained to move 
with them

• Simulation loop:
• Move the bones of the skeleton to the desired configuration
• Assume zero velocities and accelerations
• Solve for the vertex positions of the surrounding tetrahedral flesh mesh such 

that it achieves force equilibrium 
• Resulting surface of the tetrahedral flesh mesh is the skin



Anatomy Based Methods



Muscles
• Can further improve the model by adding muscles which 

contract when activated and exert an internal force on the 
tetrahedral flesh mesh

• Can leverage existing datasets such as the NIH’s Visible 
Human Project to obtain accurate muscle geometry



Muscles
• Animate the rigid body bones

• Solve an inverse problem to deduce muscle activations from 
bone motion

• Use the calculated muscle activations to simulate the 
tetrahedralized muscles (and the tetrahedralized flesh)



Muscles



Anatomical Face Models
• Can add bones, muscles, and flesh for faces too…

• Animate the muscle activations and simulate the soft body 
flesh volume to obtain expressions



Anatomical Face Models

• Fully activated 
muscles are yellow 
and fully inactive 
are red



Estimating Muscle Activations
• Estimate muscle activations using motion capture
• For a given target facial shape (with target marker locations), 

solve an inverse problem to determine what muscle activations 
are required to match that shape (to match the markers)

• Facial expressions can also be modified by changing the joint 
angle of the jaw which causes the attached flesh to move and 
deform

• Can interpolate muscle activations and joint angles from 
different frames to obtain new physically valid facial expressions



Retargeting


