
Class 1 Exercises

CS250/EE387, Winter 2022

1. Let C ⊂ {0, 1}n be a code over the alphabet {0, 1} with block length n. What distance does C need to
have to correct up to two errors?

Come up with a code C ⊂ {0, 1}n that can correct two errors and that has n ≤ 10. There is a
straightforward construction of such a n = 10 and with message length k = 2. Once you find that
construction, can you do better? (For example, can you find a code that can correct up to two errors,
with k = 2 and n < 10?)

Bonus. What’s the best you can do? Can you prove that it’s the best?

Extra Bonus. What’s the best you can do if k = 3? k = 4? Does your solution generalize?

[Break for a bit of lecture before moving on]

2. In the lecture, we saw a binary code that had message length k = 4, codeword length n = 7, and
distance d = 3. The encoding map was:

(x1, x2, x3, x4) 7→ (x1, x2, x3, x4, x1 + x2 + x3, x1 + x3 + x4, x1 + x2 + x4),

(all mod 2), and we had this picture of circles:

(a) We asserted that this code has distance 3. Convince yourself of this. (You don’t need to give a
formal proof, just stare at it until you are convinced and/or can convince each other).

Hint. It suffices to show that there are no codewords with fewer than 3 ones. (Do you see why?)

(b) It turns out that this is optimal – for example, there is no binary code with k = 5, d = 3 and
n = 7. Prove this!

Hint. Suppose that there were such a code. Consider the Hamming balls of radius 1 given by

B(c, 1) = {x ∈ {0, 1}7 : ∆(x, c) ≤ 1}

for each c ∈ C. Do any of these Hamming balls overlap? How many points do they cover in total?

(c) (Bonus). Generalize your logic on the previous problem to give an upper bound on k, in terms
of n and d, if a code C ⊂ {0, 1}n with message length k and distance d exists.

1



3. (Bonus.) How would you show formally that the distance of the Hamming code in the previous
problem has distance 3. (There are several ways – try to find the most general way you can! What
abstractions might be useful?)

4. (More bonus). The code in the previous problem suggests a general recipe for creating codes (with
k = 4 and n = 7):

(x1, x2, x3, x4) 7→ (x1, x2, x3, x4, f5(~x), f6(~x), f7(~x)),

where f5, f6, f7 are some linear functions mod 2. (That is, fi(x1, x2, x3, x4) is the sum of some of the
message bits, mod 2.)

What properties should f5, f6, f7 have in order to make sure that the code we get has distance 3? How
many possibilities are there?

2


