Class 10 Exercises

CS250/EE387, Winter 2022

Warm-Up

What can you say (so far in this class) about the list-decodability of Reed-Solomon codes? That is, what is the best trade-off between R and ρ so that an RS code of rate R is (ρ, L) -list-decodable for, say, polynomialsized L?

One proof of the Johnson bound

Today we'll prove the (binary) Johnson bound. (You'll see a different proof on your homework). Recall from the lecture videos/notes that

$$
J_2(\delta) = \frac{1}{2}(1 - \sqrt{1 - 2\delta}),
$$

and that the Johnson bound says:

Theorem 1 (Johnson bound). Suppose that $C \subseteq \{0,1\}^n$ is a code of relative distance at least δ . Suppose that $\rho \leq J_2(\delta)$. Then for any $z \in \{0,1\}^n$,

$$
|\mathcal{C} \cap B_2^n(z,\rho)| \leq something\ polynomial\ in\ n
$$

Towards proving Theorem [1,](#page-0-0) let $\mathcal{C} \subseteq \{0,1\}^n$ be a code of relative distance at least δ , and choose $\rho < J_2(\delta)$. let $z \in \{0,1\}^n$ be any vector. Suppose that $\mathcal{C} \cap B_2^n(z,\rho) = \{c_1,\ldots,c_M\}$. Our goal is to show that M is not too big.

1. Define a map $\phi: \{0,1\} \to \mathbb{R}^2$ by:

$$
\phi(0) = (0, 1) \qquad \phi(1) = (1, 0).
$$

Extend this to a map $\phi: \{0,1\}^n \to \mathbb{R}^{2n}$ in the natural way. That is,

$$
\phi((x_1,\ldots,x_n))=\phi(x_1)\circ\phi(x_2)\circ\cdots\circ\phi(x_n),
$$

where ∘ denotes concatenation. Define

$$
v := \alpha \phi(z) + \frac{1-\alpha}{2} \mathbf{1},
$$

where $\alpha \in [0, 1]$ is some parameter that we will define later, and where 1 is the all-ones vector of length 2n.

What can you say about each of the following quantities? (That is, either simplify them or bound them). Your answers should be in terms of δ, ρ, α .

(a) $\langle \phi(c_i), \phi(c_j) \rangle$ for $i \neq j$. (Show that this is at most something, using the fact that the amount of agreement between two codewords is at most $(1 - \delta)n$.

- (b) $\langle v, \phi(c_i) \rangle$ for any $i = 1, ..., M$. (Show that this is at least something, using the fact that the agreement between any of the c_i and z is at least $(1 - \rho)n$.
- (c) $\langle v, v \rangle$. (Figure out exactly what this is equal to).
- 2. Choose $\alpha =$ √ $1 - 2\delta$. Show that

$$
\langle v - \phi(c_i), v - \phi(c_j) \rangle \le 0
$$

for any $i \neq j$? (Hint, use (i) the previous part, (ii) the assumption that $\rho < J_2(\delta) = \frac{1-\alpha}{2}$ using our choice of α , and (iii) the fact that $(1 - \alpha^2)/2 = \delta$ using again our choice of α).

3. It turns out that you can't have too many vectors in \mathbb{R}^D that are all at obtuse angles from each other. More precisely, we have the following fact:

Fact 2. Let $x_1, x_2, \ldots, x_M \in \mathbb{R}^D$ such that $\langle x_i, x_j \rangle \leq 0$ for all $i \neq j$. Suppose further that there exists a non-zero vector $u \in \mathbb{R}^D$ so that $\langle u, v_i \rangle \geq 0$ for all $i = 1, ..., M$. Then $M \leq 2D - 1$.

Use the fact to prove Theorem [1.](#page-0-0)

4. (Bonus). Use this technique to prove the q -ary Johnson bound.