Class 11 Exercises

CS250/EE387, Winter 2022

1. (We will do this exercise/recap together in class). Recall Sudan's algorithm from the lecture notes/videos. We are trying to list-decode a RS code of dimension k over \mathbb{F}_q with evaluation points $\alpha_1, \alpha_2, \ldots, \alpha_n$.

Given a received word $y \in \mathbb{F}_q^n$:

- Interpolation Step: Interpolate a nonzero polynomial $Q(X,Y) = \sum_{i=1}^{\ell} A_i(X)Y^i$ with *Y*-degree ℓ and *X*-degree n/ℓ so that $Q(\alpha_i, y_i) = 0$ for all i = 1, ..., n.
- Root-Finding Step: Factor Q(X, Y) and find all factors of the form (Y f(X)), where deg(f) < k. For each such factor, add (the codeword corresponding to) f(X) to the output list.

Choose $\ell = \sqrt{n/k}$. Reconstruct the quantitative argument from the notes/videos to prove that this algorithm is a good list-decoding algorithm. Come up with a statement like: "the RS code is (ρ, L) -list-decodable with L = [something to do with the rate of the code], provided $that <math>\rho$ is at most [something to do with the rate of the code]."

Note: The notation for the algorithm above is slightly different than the notation from the videos/notes. (In particular, ℓ is playing a slightly different role). Don't just copy the notes!

<u>Hint:</u> As a reminder, the outline of the argument is:

- Argue that you can do the interpolation step.
- Suppose that we should return f(X), meaning that its encoding is within the radius ρ of y. Consider R(X) = Q(X, f(X)). Argue that if ρ is small enough, you can ensure that R(X) has lots of roots and so has to be identically zero. How small do you need to take ρ ?
- Argue that if $R(X) \equiv 0$ then we'll return f(X).
- Make the desired statement about list-decoding.

2. In this exercise, we'll see a list-decoding algorithm (which might look somewhat familiar...) for a class of codes called *Chinese Remainder Codes* (c.f. Problem 2.1 on HW3). Below, \mathbb{Z}_N refers to the integers $\{0, 1, \ldots, N-1\}$ with arithmetic mod N.

These codes are based on the *Chinese Remainder Theorem*:

Theorem 1. Let p_1, \ldots, p_t be relatively prime. Let $P = \prod_{i=1}^t p_i$. Fix $a_1, \ldots, a_t \in \mathbb{Z}_P$. There is a unique $m \in \mathbb{Z}_P$ so that $m \equiv a_i \mod p_i$ for all $i \in [t]$.

This inspires the following code¹:

Definition 1. Fix $p_1 < p_2 < \cdots < p_n$ relatively prime. Let $N = \prod_{i=1}^n p_i$ and let $K = \prod_{i=1}^k p_i$. Define an encoding map $E : \mathbb{Z}_K \to \mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_n}$ given by

 $E(m) = (m \mod p_1, m \mod p_2, \dots, m \mod p_n).$

The Chinese Remainder Code with parameters k and n defined by p_1, \ldots, p_n is the set of codewords $\{E(m) : m \in \mathbb{Z}_K\}$.

In your homework (HW3, problem 2.1), you will show that these codes have distance at least n - k + 1, matching RS codes. But what about list-decoding?

- (a) Consider the following list-decoding algorithm. Let $y = (y_1, \ldots, y_n) \in \mathbb{Z}_{p_1} \times \cdots \times \mathbb{Z}_{p_n}$ be a received word. Our goal is to find all of the $m \in \mathbb{Z}_K$ so that $dist(E(m), y) \leq \rho n$. **Input:** $y \in \mathbb{Z}_{p_1} \times \cdots \times \mathbb{Z}_{p_n}$, parameters ℓ, F to be determined.
 - Let $r \in \mathbb{Z}_N$ be the unique element so that $r \equiv y_i \mod p_i$ for all $i \in [n]$.
 - Interpolation Step: Find $a = (a_0, a_1, \ldots, a_\ell)$ so that $a \neq \vec{0}$ and so that the following hold:
 - $\circ |a_i| \leq F/K^i$ for all $i = 0, \dots, \ell$.
 - $\circ \ \sum_{i=0}^{\ell} a_i r^i \equiv 0 \mod N.$
 - Root-finding Step: Return the roots of $A(X) = \sum_{i=0}^{\ell} a_i X^i$. (Here, this polynomial is over the integers, not modulo anything).

There is no question for this part, just make sure the algorithm parses.

(b) Suppose that we can do the **Interpolation Step** with our chosen ℓ, F . Let $m \in \mathbb{Z}_K$ and suppose that $\operatorname{dist}(E(m), y) \leq \rho n$. Show that, if ρ is not too large, then A(m) = 0, where $A(X) = \sum_i a_i X^i$.

<u>Hint:</u> Follow the following outline:

- i. Suppose that E(m) and y agree in position i. Explain why $A(m) \equiv 0 \mod p_i$.
- ii. By the previous part, if $\operatorname{dist}(E(m), y) \leq \rho n$, then there are $(1-\rho)n$ values of *i* so that $A(m) \equiv 0 \mod p_i$. Use the conditions on the a_i to bound $|A(m)| \leq [something]$ and use the Chinese Remainder Theorem to conclude that $A(m) \equiv 0$, provided that ρ is not too big.

¹Notice that the alphabet is different for each symbol, so it doesn't strictly match our definition of a code, but let's go with it.

How big can ρ be, in terms of ℓ , F, and the p_i 's? (It will be useful later to simplify your answer to be in terms of ℓ , F and p_1 , the smallest of the p_i 's).

(c) Observe that the previous part shows that, if we can do the Interpolation Step, and if ρ is not too big, any m that satisfies $dist(E(m), y) \leq \rho n$ will be returned in the root-finding step. That is, we will have a correct list-decoding algorithm, up to radius $\rho!$

(For this question, if you don't immediately observe this, then explain why this is the case!)

(d) Towards doing the Interpolation Step, prove the following lemma.

Lemma 2. Fix $r \in \mathbb{Z}_N$. Suppose that $B_0, \ldots, B_\ell \in \mathbb{Z}$ are such that $B_i > 0$, and $\prod_{i=0}^{\ell} B_i > N$. Show that there exist $a_0, \ldots, a_\ell \in \mathbb{Z}$ (not all zero), so that $|a_i| < B_i$ for all *i*, and so that

$$\sum_{i=0}^{\ell} a_i r^i \equiv 0 \mod N.$$

<u>Hint</u>: Consider the map $f : \mathbb{Z}_{B_0} \times \cdots \times \mathbb{Z}_{B_\ell} \to \mathbb{Z}_N$ given by $f(x_0, \ldots, x_\ell) = \sum_{i=0}^\ell x_i r^i \mod N$. Use the pigeonhole principle.

(e) Suppose that you don't care about the efficiency of the **Interpolation Step.** Using the previous part, what relationship do N, F, K, ℓ need to satisfy in order for you to guarantee the **Interpolation Step** can be done?

Translate this to a guarantee on p_n, n, k as well as F, ℓ .

(f) Choose $\ell = \sqrt{n/k}$. Put the previous parts together (and pick an appropriate F) to produce a statement like "as long as $\rho \leq \dots$, the code is (ρ, \dots) -list-decodable with the algorithm above." The \dots 's should be in terms of k, n, and the p_i 's. It might be convenient to get a guarantee in terms of $\kappa := \log(p_n)/\log(p_1)$.

You may also assume that $p_n \gg \ell$ and use big-Oh notation in your bound to simplify it.

(g) Compare this (both the algorithm and the result) with the Sudan (or Guruswami-Sudan) algorithm for Reed-Solomon codes.

(Bonus.) Fun thing to think about, if you are familiar with polynomial quotient rings: With the CRT codes, the *i*'th symbol was $m \mod p_i$. One way to view an RS code is that the *i*'th symbol is $f(X) \mod (X - \alpha_i)$. Push this analogy as far as you can in the context of the algorithm we just developed.

(h) **(Bonus).** What if you want the **Interpolation Step** to be efficient? Would you have to change the parameters?