
Class 11 Exercises

CS250/EE387, Winter 2022

1. (We will do this exercise/recap together in class). Recall Sudan’s algorithm from the
lecture notes/videos. We are trying to list-decode a RS code of dimension k over Fq with
evaluation points α1, α2, . . . , αn.

Given a received word y ∈ Fnq :

• Interpolation Step: Interpolate a nonzero polynomial Q(X,Y) =
∑`

i=1Ai(X)Y i with
Y -degree ` and X-degree n/` so that Q(αi, yi) = 0 for all i = 1, . . . , n.

• Root-Finding Step: Factor Q(X,Y) and find all factors of the form (Y − f(X)),
where deg(f) < k. For each such factor, add (the codeword corresponding to) f(X) to
the output list.

Choose ` =
√
n/k. Reconstruct the quantitative argument from the notes/videos to prove

that this algorithm is a good list-decoding algorithm. Come up with a statement like: “the
RS code is (ρ, L)-list-decodable with L =[something to do with the rate of the code], provided
that ρ is at most [something to do with the rate of the code].”

Note: The notation for the algorithm above is slightly different than the notation from the
videos/notes. (In particular, ` is playing a slightly different role). Don’t just copy the notes!

Hint: As a reminder, the outline of the argument is:

• Argue that you can do the interpolation step.

• Suppose that we should return f(X), meaning that its encoding is within the radius ρ
of y. Consider R(X) = Q(X, f(X)). Argue that if ρ is small enough, you can ensure
that R(X) has lots of roots and so has to be identically zero. How small do you need to
take ρ?

• Argue that if R(X) ≡ 0 then we’ll return f(X).

• Make the desired statement about list-decoding.

Solution

Following the outline,

• We can do the interpolation since there are n constraints and (` + 1)(n/` + 1) > n
coefficients in the resulting linear system.

• The degree of R(X) is at most n/` + ` · k. With the choice of ` =
√
n/k, this is

deg(R) ≤ 2
√
nk. However, R(X) has a root for every location where f(αi) = yi. By

assumption there are at least (1 − ρ)n of those. So we have that R(X) ≡ 0 as long

1

as
(1− ρ)n > 2

√
nk,

or
1− ρ > 2

√
k/n = 2

√
R

where R is the rate of the code. Thus, we can list-decode up to radius

ρ = 1− 2
√
R.

• If R(X) ≡ 0 then Q(X, f(X)) ≡ 0, which means that (Y − f(X))|Q(X,Y) (just like
if P (a) = 0 then (X − a)|p(X)).

• We conclude that as long as ρ ≤ 1 − 2
√
R, that a RS code of rate R is (ρ,

√
1/R)-

list-decodable. Here, we got the list size since there are at most ` =
√
n/k = 1/

√
R

roots f(X) of a polynomial Q(X,Y) of Y -degree `.

2

2. In this exercise, we’ll see a list-decoding algorithm (which might look somewhat familiar...)
for a class of codes called Chinese Remainder Codes (c.f. Problem 2.1 on HW3). Below, ZN
refers to the integers {0, 1, . . . , N − 1} with arithmetic mod N .

These codes are based on the Chinese Remainder Theorem:

Theorem 1. Let p1, . . . , pt be relatively prime. Let P =
∏t
i=1 pi. Fix a1, . . . , at ∈ ZP . There

is a unique m ∈ ZP so that m ≡ ai mod pi for all i ∈ [t].

This inspires the following code1:

Definition 1. Fix p1 < p2 < · · · < pn relatively prime. Let N =
∏n
i=1 pi and let K =

∏k
i=1 pi.

Define an encoding map E : ZK → Zp1 × Zp2 × · · · × Zpn given by

E(m) = (m mod p1,m mod p2, . . . ,m mod pn).

The Chinese Remainder Code with parameters k and n defined by p1, . . . , pn is the set of
codewords {E(m) : m ∈ ZK}.

In your homework (HW3, problem 2.1), you will show that these codes have distance at least
n− k + 1, matching RS codes. But what about list-decoding?

(a) Consider the following list-decoding algorithm. Let y = (y1, . . . , yn) ∈ Zp1 × · · · × Zpn
be a received word. Our goal is to find all of the m ∈ ZK so that dist(E(m), y) ≤ ρn.

Input: y ∈ Zp1 × · · · × Zpn , parameters `, F to be determined.

• Let r ∈ ZN be the unique element so that r ≡ yi mod pi for all i ∈ [n].

• Interpolation Step: Find a = (a0, a1, . . . , a`) so that a 6= ~0 and so that the
following hold:

◦ |ai| ≤ F/Ki for all i = 0, . . . , `.

◦
∑`

i=0 air
i ≡ 0 mod N .

• Root-finding Step: Return the roots of A(X) =
∑`

i=0 aiX
i. (Here, this polyno-

mial is over the integers, not modulo anything).

There is no question for this part, just make sure the algorithm parses.

(b) Suppose that we can do the Interpolation Step with our chosen `, F . Let m ∈ ZK
and suppose that dist(E(m), y) ≤ ρn. Show that, if ρ is not too large, then A(m) = 0,
where A(X) =

∑
i aiX

i.

Hint: Follow the following outline:

i. Suppose that E(m) and y agree in position i. Explain why A(m) ≡ 0 mod pi.

ii. By the previous part, if dist(E(m), y) ≤ ρn, then there are (1−ρ)n values of i so that
A(m) ≡ 0 mod pi. Use the conditions on the ai to bound |A(m)| ≤ [something]
and use the Chinese Remainder Theorem to conclude that A(m) ≡ 0, provided that
ρ is not too big.

How big can ρ be, in terms of `, F , and the pi’s? (It will be useful later to simplify your
answer to be in terms of `, F and p1, the smallest of the pi’s).

1Notice that the alphabet is different for each symbol, so it doesn’t strictly match our definition of a code, but
let’s go with it.

3

Solution

Notice that, over Z,

|A(m)| <
∑̀
i=0

(F/Ki)Ki = (`+ 1)F,

using the fact that m < K. If we remove the absolute values, we can treat A(m) as
living in ZP for any P ≥ 2(`+ 1)F . If E(m) and y agree in at least (1− ρ)n places,
then

A(m) ≡ 0 mod pi

for at least (1− ρ)n different values of i. Let P =
∏
i:E(m)i=yi

pi.
By the CRT, there is a unique value M ∈ ZP so that M ≡ 0 mod pi for all i. One
the one hand, M = 0 is such an M . On the other hand, if P ≥ 2(` + 1)F , then
A(m) is that unique value. So we conclude that if P ≥ 2(`+ 1)F , then

A(m) = 0.

Therefore, our second step—returning all the roots of A—will indeed include m in
the list.
We can simplify this requirement a bit by observing that it’s enough for

p
(1−ρ)n
1 ≥ 2(`+ 1)F,

since p1 is the smallest of the p’s.

(c) Observe that the previous part shows that, if we can do the Interpolation Step, and
if ρ is not too big, any m that satisfies dist(E(m), y) ≤ ρn will be returned in the
root-finding step. That is, we will have a correct list-decoding algorithm, up to radius
ρ!

(For this question, if you don’t immediately observe this, then explain why this is the
case!)

(d) Towards doing the Interpolation Step, prove the following lemma.

Lemma 2. Fix r ∈ ZN . Suppose that B0, . . . , B` ∈ Z are such that Bi > 0, and∏`
i=0Bi > N . Show that there exist a0, . . . , a` ∈ Z (not all zero), so that |ai| < Bi for

all i, and so that ∑̀
i=0

air
i ≡ 0 mod N.

Hint: Consider the map f : ZB0 × · · · × ZB`
→ ZN given by f(x0, . . . , x`) =

∑`
i=0 xir

i

mod N . Use the pigeonhole principle.

Solution

Following the hint, let f be as above. Since
∏`
i=0Bi > N , there are some distinct

~x, ~x′ so that f(~x) = f(~x′). Let ai = xi − x′i (over Z, not over ZBi). Notice that

4

|ai| ≤ Bi as required. Moreover,

∑̀
i=0

air
i =

∑̀
i=0

xir
i −
∑̀
i=0

x′ir
i ≡ 0 mod N.

(e) Suppose that you don’t care about the efficiency of the Interpolation Step. Using
the previous part, what relationship do N,F,K, ` need to satisfy in order for you to
guarantee the Interpolation Step can be done?

Translate this to a guarantee on pn, n, k as well as F, `.

Solution

We apply the lemma with Bi ← F/Ki, and we see that the lemma applies as long
as

N <
∏̀
i=0

F/Ki = F `+1K−`(`+1)/2.

Using the fact that pn is the largest, it is enough for

pn+k`(`+1)/2
n < F `+1.

(f) Choose ` =
√
n/k. Put the previous parts together (and pick an appropriate F) to

produce a statement like “as long as ρ ≤ , the code is (ρ,)-list-decodable with
the algorithm above.” The ’s should be in terms of k, n, and the pi’s. It might be
convenient to get a guarantee in terms of κ := log(pn)/ log(p1).

You may also assume that pn � ` and use big-Oh notation in your bound to simplify it.

Solution

From part (b), we need

p
(1−ρ)n
1 ≥ 2(`+ 1)F

and from part (d) we need
pn+k`(`+1)/2
n < F `+1.

Using the first equation, let’s set

F =
p
(1−ρ)n
1

2(`+ 1)
.

Plugging this into the second equation and taking `+ 1’st roots, we need

pn/(`+1)+k`/2
n <

p
(1−ρ)n
1

2(`+ 1)
.

Now we take logs base pn and get

n

`+ 1
+
k`

2
<

(1− ρ)n

κ
− logpn(2(`+ 2))

5

Since pn � `, the last term is o(1), and we can ignore the +1 in the denominator of
the first term. Dividing by n, we get

κ

(
1

`
+
k`

2n

)
< 1− ρ

and plugging in `←
√
n/k, we get

κ
(√

k/n+
√
k/n/2

)
< 1− ρ,

or

ρ ≤ 1− 3κ

2

√
k/n.

If ρ satisfies this, we conclude that we can do the interpolation step, and that for
any m we wnat to return the root-finding step returns it. FInally, we observe that
the root-finding step returns at most ` =

√
n/k things, so we get:

Suppose that ρ ≤ 1 − 3κ
2

√
k/n. Then the CRT code is (ρ,

√
n/k)-list-

decodable.

(g) Compare this (both the algorithm and the result) with the Sudan (or Guruswami-Sudan)
algorithm for Reed-Solomon codes.

(Bonus.) Fun thing to think about, if you are familiar with polynomial quotient rings:
With the CRT codes, the i’th symbol was m mod pi. One way to view an RS code is
that the i’th symbol is f(X) mod (X − αi). Push this analogy as far as you can in the
context of the algorithm we just developed.

Solution

The framework is very similar! We have an interpolation step and a root-finding
step. The analysis proceeds by showing that a “correct” message is a root of a
polynomial that we interpolate.
The quantitative result is also pretty similar. It’s not clear what the “right” notion of
the Johnson bound is for codes with different alphabets for each symbol (c.f. HW3,
problem 2.1 for more on interpreting this), but if we just take k, n for granted, we
can write ρ ≤ 1− Õ(

√
k/n) in both cases, where the O(·) in the CRT case depends

on κ (which is actually not a constant).
(There’s lots more to say here about comparing and contrasting these two algo-
rithms!)

(h) (Bonus). What if you want the Interpolation Step to be efficient? Would you have
to change the parameters?

Solution

Check out the paper “Chinese Remaindering with Errors” by Goldreich, Ron and Su-
dan here: https://eccc.weizmann.ac.il/report/1998/062/revision/4/download/

6

https://eccc.weizmann.ac.il/report/1998/062/revision/4/download/

