
Class 13 Exercises

CS250/EE387, Winter 2022

In the lecture videos/notes, we saw Folded Reed-Solomon Codes. Recall that the guarantee of these codes
was the following:

Theorem 1. Let ε > 0. There is a choice of s = O(1/ε) and m = O(1/ε2) so that the following holds.
Let C ⊆ (Fm

q )N be a Folded RS code with folding parameter m. (So N = n/m, where n ≤ q is the length
of the original RS code). Let R be the rate of C.

The C is (1−R− ε, L)-list-decodable, where L = qs. Moreover, for any z ∈ (Fm
q )N , the list

L = {c ∈ C : δ(c, z) ≤ 1−R− ε}

is contained in a subspace V ⊆ C of dimension at most s.

In this exercise, we’ll see that actually we can improve the list size from L = qs (which is larger than Ns,
since q ≥ n ≥ N) to something that doesn’t depend on the length N of the code.

1. For this question, we will use the following theorem:

Theorem 2. Let V ⊂ (Fm
q )N be any subspace of dimension at most s, so that for any two c, c′ ∈ V ,

δ(c, c′) ≥ 1−R.

Let S ⊆ [N ] be a random set of size t. Then the probability that there exist two c, c′ ∈ V so that
c|S = c′|S is at most

PS [c|S = c′|S ] ≤ Rt

(
t

R

)s

.

You don’t need to prove the theorem (yet!), but just make sure you understand it.

2. Consider the following (randomized) decoding algorithm for an FRS code of rate R.

Given z ∈ (Fm
q )N :

• Run the decoder from Theorem 1 to obtain a subspace V ⊆ C of dimension at most s = O(1/ε)
that contains the list L = {c ∈ C : δ(c, z) ≤ 1−R− ε}.

• Choose S ⊆ [N ] of size t uniformly at random. (In more detail, we will choose t elements of
[N ], independently with replacement, to be in S. So maybe it happens that |S| ≤ t if there are
collisions).

• If there is a unique codeword c ∈ V so that c|S = z|S , return c.

• Otherwise, return Fail.

Let c ∈ C be such that δ(c, z) ≤ 1− R − ε. Show that the probability that this algorithm returns c is
at least

Pr[Alg returns c] ≥ (R+ ε)t −Rt

(
t

R

)s

.
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3. Suppose that R is some constant (like, 1/4 or something like that), and that s is large enough and ε
is small enough. Show that if t ≥ 100s

ε ln(s/ε), then

Rt(t/R)s ≤ 1

e
(R+ ε)t.

Note: It’s okay to be super handwavey here. In particular, feel free to use the approximation ex ≈ 1+x
for small x as though it were an equality, and feel free to make the constant “100” bigger if you like,
and feel free to change 1/e to 1/2 or 9/10 or any constant in (0, 1) that you like.

4. Use the previous two parts to show that, for any z,

|Lz| =
(s
ε

)O(s/ε)

=

(
1

ε

)O(1/ε2)

,

where
Lz = {c ∈ C : δ(c, z) ≤ 1−R− ε} .

In particular, the FRS code C is actually (1−R−ε, (1/ε)O(1/ε2))-list-decodable, which is asymptotically
better than what Theorem 1 gives (assuming N is way way bigger than 1/ε).

Note: As before, assume that R is some constant, like 1/4.

Hint: Consider the expected number of codewords returned by the algorithm above. On the one hand,
this is at most one. On the other hand, what do you get if you compute it another way?

5. Bonus. Prove Theorem 2. We’ll walk you through a slightly easier version:

Theorem 3. Let V ⊆ Fn
q be any subspace of dimension at most s, so that for any two c, c′ ∈ V ,

δ(c, c′) ≥ 1−R.

Let S ⊆ [n] be a random (multi-)set of size t (that is, choose t elements of n, independently with
replacement). Then the probability that there exist two c, c′ ∈ V so that c|S = c′|S is at most

Pr
S

[c|S = c′|S ] ≤ Rt

(
t

R

)s

=: p,

where above we are defining p to be that quantity.

(The only difference between this and Theorem 2 is that we are ignoring the folding. The folding
doesn’t really change the proof, it’s just obnoxious to keep track of.)

(a) Let M ∈ Fn×s
q be a matrix whose columns form a basis for V . Let S ⊆ [n] be as in the theorem

statement. Let M |S denote M restricted to the columns in S. Explain why it is enough to show
that M |S is rank s with probability at least p.

(b) Say that S = {i1, i2, . . . , it}, and imagine choosing these indices one at a time. Say we have chosen
i1 and are about to choose i2. Explain why the i2’th row of M is linearly independent with the
i1’st row of M with probability at least R.

(c) Continuing the line of thought above, suppose we have chosen i1 and i2 (and suppose that rows i1
and i2 span a space of dimension at most s, which will be true anyway as long as s > 2). Explain
why the i3’rd row of M does not lie in the span of the first two, with probability at least R.

(d) Continuing further, let 2 < r ≤ t, and suppose that you have chosen i1, i2, . . . , ir−1, and that you
still don’t have a full rank set of rows. Explain why the ir’s row of M does not lie in the span of
rows i1, . . . , ir−1, with probability at least R.

(e) Use the fact that you proved in part (d), along with the sufficient condition in part (a), to prove
the theorem.

Hint. If we draw t rows of M and fail to get a full-rank matrix, then there are at least t − s + 1
rows that we drew that did not increase the dimension of the span of the rows that we have...

Hint. We have
(

t
t−s+1

)
Rt−s+1 ≤ Rt(t/R)s (why?)
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