
Class 13 Exercises

CS250/EE387, Winter 2022

In the lecture videos/notes, we saw Folded Reed-Solomon Codes. Recall that the guarantee of
these codes was the following:

Theorem 1. Let ε > 0. There is a choice of s = O(1/ε) and m = O(1/ε2) so that the following
holds.

Let C ⊆ (Fm
q )N be a Folded RS code with folding parameter m. (So N = n/m, where n ≤ q is

the length of the original RS code). Let R be the rate of C.
The C is (1−R− ε, L)-list-decodable, where L = qs. Moreover, for any z ∈ (Fm

q )N , the list

L = {c ∈ C : δ(c, z) ≤ 1−R− ε}

is contained in a subspace V ⊆ C of dimension at most s.

In this exercise, we’ll see that actually we can improve the list size from L = qs (which is larger
than N s, since q ≥ n ≥ N) to something that doesn’t depend on the length N of the code.

1. For this question, we will use the following theorem:

Theorem 2. Let V ⊂ (Fm
q )N be any subspace of dimension at most s, so that for any two

c, c′ ∈ V , δ(c, c′) ≥ 1−R.

Let S ⊆ [N ] be a random set of size t. Then the probability that there exist two c, c′ ∈ V so
that c|S = c′|S is at most

PS [c|S = c′|S ] ≤ Rt

(
t

R

)s

.

You don’t need to prove the theorem (yet!), but just make sure you understand it.

Solution

Got it!

2. Consider the following (randomized) decoding algorithm for an FRS code of rate R.

Given z ∈ (Fm
q )N :

• Run the decoder from Theorem 1 to obtain a subspace V ⊆ C of dimension at most
s = O(1/ε) that contains the list L = {c ∈ C : δ(c, z) ≤ 1−R− ε}.
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• Choose S ⊆ [N ] of size t uniformly at random. (In more detail, we will choose t elements
of [N ], independently with replacement, to be in S. So maybe it happens that |S| ≤ t if
there are collisions).

• If there is a unique codeword c ∈ V so that c|S = z|S , return c.

• Otherwise, return Fail.

Let c ∈ C be such that δ(c, z) ≤ 1 − R − ε. Show that the probability that this algorithm
returns c is at least

Pr[Alg returns c] ≥ (R+ ε)t −Rt

(
t

R

)s

.

Solution

There are two reasons that the algorithm would fail to return c. The first is that z|S 6= c|S .
Since δ(c, z) ≤ 1−R− ε, the probability that

Pr[z|S = c|S ] = (R+ ε)t,

and so
Pr[z|S 6= c|S ] = 1− (R+ ε)t.

The other bad event that could happen is that if there is some c′ ∈ V so that c′|S = c|S .
By Theorem 2, the probability that this occurs is at most Rt(t/R)s. By a union bound,

Pr[Alg returns c] ≥ 1− (1− (R+ ε)t)−Rt

(
t

R

)s

= (R+ ε)t −Rt(t/R)s,

as desired.

3. Suppose that R is some constant (like, 1/4 or something like that), and that s is large enough
and ε is small enough. Show that if t ≥ 100s

ε ln(s/ε), then

Rt(t/R)s ≤ 1

e
(R+ ε)t.

Note: It’s okay to be super handwavey here. In particular, feel free to use the approximation
ex ≈ 1 +x for small x as though it were an equality, and feel free to make the constant “100”
bigger if you like, and feel free to change 1/e to 1/2 or 9/10 or any constant in (0, 1) that you
like.

Solution

First we write (R+ ε)t = Rt(1 + ε/R)t, so we want to show that

(t/R)s ≤ 1

2
(1 + ε/R)t.

Using the approximation 1 + x ≈ ex for small x, we have

(1 + ε/R)t ≈ etε/R,
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so we want to show that

(t/R)s ≤ 1

e
etε/R.

Taking logs of both sides, this reads

s ln(t/R) ≤ tε

R
− 1.

Thus, we should have

t ≥ R(s ln(t/R) + 1)

ε
. (1)

If R is a constant, then choosing t = Ω(s ln(s/ε)/ε) will satisfy this.

(To see this, we can plug into (1):

100s ln(s/ε)

ε
≥ R(s ln(100s ln(s/ε)/ε) + 1)

ε

=
Rs ln(s/ε)

ε
+
Rs ln ln(s/ε)

ε
+
Rs ln(100) + 1

ε
⇔

(100−R)s ln(s/ε)

ε
≥ Rs ln ln(s/ε)

ε
+
Rs ln(100) + 1

ε
⇔

(100−R) ln(s/ε) ≥ R ln ln(s/ε) +R ln(100) + 1

which is true for large enough s and small enough ε, since the left hand is asymptotically
larger than the right hand side.)

4. Use the previous two parts to show that, for any z,

|Lz| =
(s
ε

)O(s/ε)
=

(
1

ε

)O(1/ε2)

,

where
Lz = {c ∈ C : δ(c, z) ≤ 1−R− ε} .

In particular, the FRS code C is actually (1 − R − ε, (1/ε)O(1/ε2))-list-decodable, which is
asymptotically better than what Theorem 1 gives (assuming N is way way bigger than 1/ε).

Note: As before, assume that R is some constant, like 1/4.

Hint: Consider the expected number of codewords returned by the algorithm above. On the
one hand, this is at most one. On the other hand, what do you get if you compute it another
way?

Solution
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Following the hint, we have

1 ≥ E[num codewords returned] ≥
∑
c∈Lz

Pr[c is returned ],

where the second inequality follows from part 2. By part 3, we conclude that

1 ≥ |Lz| · (1− 1/e)(R+ ε)t,

where
t = 100s log(s/ε)/ε.

Solving for |Lz|, we have

|Lz| ≤
1

(1− 1/e)(R+ ε)t
= exp(O(t)) = exp(O(s log(s/ε)/ε)) = (s/ε)O(s/ε).

Plugging in s = O(1/ε) gives the result.

5. Bonus. Prove Theorem 2. We’ll walk you through a slightly easier version:

Theorem 3. Let V ⊆ Fn
q be any subspace of dimension at most s, so that for any two

c, c′ ∈ V , δ(c, c′) ≥ 1−R.

Let S ⊆ [n] be a random (multi-)set of size t (that is, choose t elements of n, independently
with replacement). Then the probability that there exist two c, c′ ∈ V so that c|S = c′|S is at
most

Pr
S

[c|S = c′|S ] ≤ Rt

(
t

R

)s

=: p,

where above we are defining p to be that quantity.

(The only difference between this and Theorem 2 is that we are ignoring the folding. The
folding doesn’t really change the proof, it’s just obnoxious to keep track of.)

(a) Let M ∈ Fn×s
q be a matrix whose columns form a basis for V . Let S ⊆ [n] be as in the

theorem statement. Let M |S denote M restricted to the columns in S. Explain why it
is enough to show that M |S is rank s with probability at least p.

Solution

Let c, c′ ∈ V , so we can write c = Mx, c′ = Mx′ for some x, x′ ∈ Fs. If c|S = c′|S ,
then (M |S)x = (M |S)x′, but if M |S is full rank this implies that x = x′. But then
c = c′.

(b) Say that S = {i1, i2, . . . , it}, and imagine choosing these indices one at a time. Say we
have chosen i1 and are about to choose i2. Explain why the i2’th row of M is linearly
independent with the i1’st row of M with probability at least R.
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Solution

Let’s call the first row that we picked v ∈ Fs. Suppose towards a contradiction that
the claim is false. Then there’s a strictly greater than R fraction of rows of M that
are linearly dependent with v. Let x ∈ Fs be any nonzero vector so that vTx = 0.
But then Mx has strictly greater than an R fraction of zeros, since (Mx)i = 0 for
any row i that’s linearly dependent with v. This is a contradiction of the fact that
δ(c, c′) ≥ 1 − R for any c, c′ ∈ V , since Mx and 0 are both in V and they have
distance < 1−R.

(c) Continuing the line of thought above, suppose we have chosen i1 and i2 (and suppose
that rows i1 and i2 span a space of dimension at most s, which will be true anyway as
long as s > 2). Explain why the i3’rd row of M does not lie in the span of the first two,
with probability at least R.

Solution

We can use the same argument as before. Suppose towards a contradiction that
the claim is false, and say that v1, v2 are the first two rows of M that we picked.
Choose any x so that xT v1 = xT v2 = 0. We can do this since s1, s2 don’t span an
s-dimensional space. But then Mx has strictly more than a R fraction of zeros, and
this is a contradiction of distance.

(d) Continuing further, let 2 < r ≤ t, and suppose that you have chosen i1, i2, . . . , ir−1, and
that you still don’t have a full rank set of rows. Explain why the ir’s row of M does not
lie in the span of rows i1, . . . , ir−1, with probability at least R.

Solution

Exactly the same argument again!

(e) Use the fact that you proved in the previous part to prove the theorem.

Hint. If we draw t rows of M and fail to get a full-rank matrix, then there are at least
t− s+ 1 rows that we drew that did not increase the dimension of the span of the rows
that we have...

Hint. We have
(

t
t−s+1

)
Rt−s+1 ≤ Rt(t/R)s (why?)

Solution

Suppose that we draw t rows of M and fail to get a full-rank matrix. Following the
hint, there are at least t− s+ 1 choices of rows so that when we chose that row, we
did not increase the dimension of the span of rows that we were building.
By the previous part, the probability that this happens for those t− s+ 1 choices is
at most Rt−s+1. We need to union bound over all possible choices of t− s+ 1 rows,
so we get

Pr[M |S not rank s ] ≤
(

t

t− s+ 1

)
Rt−s+1.

Following this hint, this is at most the thing we want it to be. To see why, notice

5



that(
t

t− s+ 1

)
Rt−s+1 =

(
t

s− 1

)
Rt−s+1 ≤ ts−1Rt−s+1 = (t/R)s−1Rt ≤ (t/R)sRt,

as desired.
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