Class 14 Exercises

CS250/EE387, Winter 2022

In the lecture videos/notes, we saw Locally Correctable Codes (LCCs). Recall the definition of
an LCC:

Definition 1 (LCC). A code C C Fy is a (6,Q,7)-LCC if there is a randomized algorithm A so
that the following holds. For all w € Fy so that d(c,n) < d, and for all i € [n], A makes Q queries
to w and outputs A" (i) so that

Pr[AY(i) = ¢] > 1 — 7.

We saw several examples of LCCs. One was Reed-Muller codes:

Definition 2 (g-ary Reed-Muller Code). The m-variate Reed-Muller code over Fy with degree d is
given by
RM,(m,d) = { (F(@)aery : € FylX1,..., Xp],deg(f) < d}.

For the rest of class, we will specialize to the case where m =2 and d = ¢ — 2.

As we saw in the videos, the RM codes that were decent LCCs had low rate. Today, we’ll see
one way to modify them, through a process called lifting, to make the rate close to 1.

0. Consider the following property of a (possibly high-degree) polynomial p(X,Y"), which we’ll
call property P(d):

Definition 3. We say that p(X,Y') € F,[X,Y] satisfies property P(d) if for any line {(T) =
(aT +b,cT + d), the univariate polynomial p(¢(T)) is equivalent to (that is, has all the same
evaluations as) a polynomial of degree at most d.

(a) Explain why any polynomial p(X,Y’) with total degree at most d has property P(d).

(b) Let F C Fy[X,Y], so that every polynomial f € F has property P(d). In the mini-
lecture, we saw a proof that RM,(2,d) was an LCC (for appropriate values of ¢,d).
Explain why the same argument works for the code

C={(f(@)aer; : f€F}.

(¢c) What might be the advantage of considering a code like C?



For the rest of today’s class, we will see how to come up with a code C as in part (c) above with
rate way better than the corresponding Reed-Muller code!

1. Let’s start with an example. Consider the polynomial p(X,Y) = X2Y? € F4[X,Y].

(a) Is (the evaluation vector of) p(X,Y) in RMy—4(m = 2,d = 2)?
(b) Show that p(X,Y’) has property P(2).

Hint: You may use the facts that for any x,y € Fy, we have (z + y)? = 22 + 32, and

1'4:1,'.

(¢) Reflect on the fact that this is pretty weird. Can you come up with an example like this
over the real numbers?

2. From now until the end of class, let ¢ = 2. As before, we have m = 2, and d = ¢—2.

(a) What is the rate of RM,(m = 2,d = ¢ —2)7 (Or at least, what is its limit as ¢ gets
large?)

(b) Consider the following theorem:
Theorem 1. Let ¢ = 2! for some t. The the number of f(X,Y) € F[X,Y] so that
P(q —2) holds for f(X,Y) is at least ¢* =31
Assuming that theorem is true, explain why this implies the existence of a LCC C of

_ 2 : _ 1

length N = ¢° and rate that tends to 1 as N — oo, with parameters § = 00V
Q =N, and v = 0.1.
Note: In case it is helpful, logs(4) ~ 1.26.

3. In this part, we will (mostly) prove Theorem 1.
Say that a monomial M;;(X,Y) := X'Y7 is good if P(q — 2) holds for M;j(X,Y).

(a) Explain why, to prove Theorem 1, it is enough to show that the number of good mono-
mials is at least 4* — 3¢ — 1.

(b) Let £(T) = (T',aT +b). (We are going to restrict ourselves to lines that look like this for
simplicity; the general case is basically the same). Suppose that (i,7) # (¢ — 1,9 — 1).
Consider the univariate polynomial

Py (T) = My (¢(T)).
Show that the coefficient on 797! in P;;(T) is
() e i
0 j<qg—i—1
where when we refer to an integer like (q_g_l) as a element of Fyr, we mean 1+1+4...+1

that many times.

Conclude that if (q_g_l) = 0 mod 2, then M;;(X,Y) is good.! (For the “conclude”

part, you can use the fact that 1 4+ 1 =0 in Fqgt).

'Here, you can ignore the fact that we didn’t consider general lines of the form (aT + b,cT + d), only lines like
(T,aT + b). The argument for the more general case is exactly the same, just slightly more tedious. Notice that
by restricting to these simpler lines, we are only leaving out the “horizontal” lines of the form (c,aT + b) for some
constant c.



(¢) To finish the proof, we will use the following corollary of Lucas’ theorem (which we will
not prove):

Fact 2. For an integer m < 2!, let b(m) € {0,1}' denote the binary expansion of m.
For example if t = 3, we have b(5) = 101. For a vector v € {0,1}, write v € {0,1}! to
denote the coordinate-wise flip of v. For example, @ = 010.

For two vectors v, w € {0,1}!, we say that v “lies in the 2-shadow of w” if v; = 1 implies
that w; = 1. For example, v = 100 lies in the 2-shadow of w = 101, since whenever v
has a 1, w also has a 1. However, v = 110 does not lie in the 2-shadow of w = 101,
since vo = 1 but wy = 0.

With this notation, the fact is that, for ¢ = 2¢,

(q—Z—1) # 0 b(i) <2 b(j).

This fact may seem weird, but it is true! Convince yourself of this by example by
applying it to with j =5 and ¢ = 3, and for j =5 and i = 4 (and with ¢ = 3 for both).
(d) Show that the number of good monomials is at least 4° — 3" — 1, proving the theorem.

Hint: It might be helpful that ZZ:O (2)25 = 3'. (There’s also a way to do it where this
is not helpful).

4. (Bonus) Try to use the same ideas for d < ¢ — 2 and m > 2 to come up with an LCC with
rate close to 1 and parameters § = 0.01,Q = N0 v =0.01.



