
Class 15 Exercises

CS250/EE387, Winter 2022

In the lecture videos/notes, we saw local list decoding, and an algorithm to locally list-decode
the Hadamard code. We saw one example (to learning Fourier-sparse functions) in the lecture
videos, and today we’ll see another application: hardcore predicates from one-way-functions.

Definition 1 (Hard-core bit). Let f : Fk
2 → Fk

2 be a function. We say that b : Fk
2 → F2 is a

hard-core bit for f if:

• It is computationally efficient to compute b.

• Given f(x), it is hard to determine b(x). Formally, for any randomized algorithm A that
runs in time polynomial in k, and for any function ε(k) that tends to zero polynomially fast
in k,

Pr
x∼Fk

2

[A(f(x)) = b(x)] ≤ 1

2
+ ε(k).

(The probability is over both the choice of x and any randomness in A).

Why do we care about hard-core bits? Briefly, these come up in designing pseudorandom gen-
erators (PRGs). Informally, a (cryptographic) PRG is a function ϕ : Fk

2 → Fk′
2 so that k′ > k

that takes a random seed x ∈ Fk
2 and outputs a longer pseudorandom string in Fk′

2 . Here, what
“pseudorandom” means is that no polynomial-time algorithm can distinguish it from uniformly
random with non-negligable advantage. A classical result is cryptography is that if one-way per-
mutations1 exist, then so do PRGs. The proof uses hardcore bits. Here’s the basic idea. Let
f be a one-way permutaiton. If we have a hardcore bit b for f , then consider the function φ
given by φ(x) = f(x) ◦ b(x), where ◦ denotes concatenation. The output of φ is one bit longer
than the input (hooray, this is a win!). Further, if x ∼ Fk

2 is random, then anyone who could
distinguish f(x) ◦ b(x) from a uniformly random string would also have some advantage at pre-
dicting b(x) from f(x), violating the hard-core property. (See this survey for more about PRGs:
https://www.wisdom.weizmann.ac.il/~oded/prg-primer.html.)

But does such a function b(x) exist for our one way permutation f(x)? Fortunately, it turns out
that as long as there exists some one-way permutation to use in the application above, it’s possible
to modify that function so that it has a (simple) hard-core bit!

1Informally, a one-way permutation is a permutation f : {0, 1}k → {0, 1}k so that f(x) is easy to compute, but
f−1(y) is difficult to compute.

1

https://www.wisdom.weizmann.ac.il/~oded/prg-primer.html


Theorem 1 (Goldreich-Levin Theorem). Suppose that f : Fk
2 → Fk

2 is a one-way permutation,
meaning that for any randomized algorithm A that runs in time polynomial in k, and for any
function ε(k) that tends to zero polynomially fast in k, Prx∼Fk

2
[A(f(x)) = x] ≤ ε(k).

Consider the function g : F2k
2 → F2k

2 given by

g(x, r) = f(x) ◦ r,

where ◦ denotes concatenation. Then g(x, r) is a one-way permutation, and

b(x, r) = 〈x, r〉

is a hard-core bit for g.

(You check now that g(x, r) is indeed a OWP if f(x) is).
We’ll prove this theorem by contradiction: suppose that b is not hard-core. Then there is some

efficient algorithm A that can predict b(x, r) given f(x, r). We will use A as a black box to build
an efficient algorithm B that inverts f . But since f was supposed to be a one-way permutation,
this will be a contradiction!

1. Suppose that A is an efficient algorithm so that

Pr
x,r∼Fk

2

[A(g(x, r)) = 〈x, r〉] = 1.

Give an efficient algorithm B so that

Pr
x∼Fk

2

[B(f(x)) = x] = 1.

(Above and throughout, the probabilities are also over the randomness of A,B).

2. Suppose that A is an efficient algorithm so that

Pr
x,r∼Fk

2

[A(g(x, r)) = 〈x, r〉] ≥ 3/4 + ε.

Give an efficient algorithm B so that

Pr
x∼Fk

2

[B(f(x)) = x] ≥ ε′

for some constant ε′ (that can depend on ε).

3. Suppose that A is an efficient algorithm so that

Pr
x,r∼Fk

2

[A(g(x, r)) = 〈x, r〉] ≥ 1/2 + ε.

Give an efficient algorithm B so that

Pr
x∼Fk

2

[B(f(x)) = x] ≥ ε′

for some ε′ that may depend on ε.

(Note: your answer may be of the form “use the algorithm for XXXX that we’ve seen in the
mini-lectures.” That’s fine, but if you have time, try to write down what the algorithm would
look like in this language. The main point is to make you go back over the algorithm and
remember what it’s doing.)

2


