
Class 4 Exercises

CS250/EE387, Winter 2022

1. Fix α0, α1, . . . , αr ∈ Fq. Fix y0, y1, . . . , yr ∈ Fq. Let

f(X) =

r∑
i=0

yi
Li(X)

Li(αi)
,

where

Li(X) =

∏r
j=0(X − αj)
X − αi

=
∏
j 6=i

(X − αj).

(Note that Li depends on the definition of the αj ’s).

(a) Show that f(αi) = yi for all i = 0, . . . , r. (If you haven’t seen this before, this is called Lagrange
Interpolation.)

(b) Explain what part (a) has to do with the fact (which we saw in the lecture videos/notes) that a
Reed-Solomon code is MDS (Maximum Distance Separable).

(c) In the lecture videos/notes, we defined a natural encoding map for a Reed-Solomon codeRS(~α, n, k)
by

(f0, . . . , fk−1) 7→ (f(α0), . . . , f(αn−1))

for evaluation points α0, . . . , αn−1. Use part (a) to give a systematic encoding map for RS(~α, n, k):
that is, an encoding map of the form

(x0, . . . , xk−1) 7→ (x0, . . . , xk−1, zk, zk+1, . . . , zn−1)

where the message symbols appear as the first k symbols of the codeword.

Solution

(a) We can just plug in:

f(αj) =

r∑
i=1

yi
Li(αj)

Li(αi)
= yj ,

because Li(αj) = 0 if j 6= i.

(b) Part (a) tells us how to do polynomial interpolation: given any r pairs (αi, yi), we can come up
with a degree-r polynomial that goes through those evaluation points. One way to define an
MDS code of dimension k is that any k points completely determine a codeword. Applying part
(a), with r ← k−1, we see that any k points completely determines a degree < k polynomial,
and hence a Reed-Solomon codeword (which are the evaluations of that polynomial).

(c) We interpolate f(X) as in part (a) so that f(αi) = xi for i = 0, . . . , k− 1. Then f has degree
at most k − 1. Then we set zj = f(αj) for j ≥ k.
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2. Fix ~λ = (λ1, . . . , λn) ∈ Fn and ~α = (α1, . . . , αn) ∈ Fn so that the λj ’s are all nonzero and the αj ’s are

all distinct. The generalized Reed-Solomon code GRS(~λ; ~α, n, k) of dimension k is given by

GRS(~λ; ~α, n, k) = {(λ1f(α1), λ2f(α2), . . . , λnf(αn)) : f ∈ F[X],deg(f) < k}.

(a) What is the generator matrix for GRS(~λ; ~α, n, k)? Convince yourself that generalized RS codes
are MDS codes.

Solution

The generator matrix is given by D~λ · G, where D~λ is the diagonal matrix with ~λ on the
diagonal, and G is a Vandermonde matrix (the generator matrix for RS(~α, n, k)). GRS codes
are MDS since any k× k submatrix of this generator matrix is full rank; that’s true because
we saw in the lecture videos/notes that it was true for G, and multiplying by D~λ won’t
change that.

(b) Forget about generalized RS codes for a moment. Fix distinct α1, . . . , αn ∈ F. Show that, for any
polynomial h(X) with deg(h) < n− 1, we have

n∑
i=1

h(αi)

Li(αi)
= 0,

where
Li(X) =

∏
j 6=i

(X − αj)

as in the previous problem.

Hint: Write out h(X) using Lagrange interpolation with all n points α1, α2, . . . , αn. What is the
coefficient on Xn−1 when you write it out this way?

Solution

Following the hint, we can write

h(X) =
∑
i

h(αi)
Li(X)

Li(αi)
.

In this view, the coefficient on Xn−1 is∑
i

h(αi)

Li(αi)
· (Coeff on Xn−1 in Li(X)).

We observe that Li(X) =
∏
j 6=i(X − αj) has degree exactly n − 1, and that the leading

coefficient is 1. (That’s because the only way to get Xn−1 in this product is to take the “X”
from each term (X − αj)). Thus, the coefficient on Xn−1 in h(X) is∑

i

h(αi)

Li(αi)
.

On the other hand, the degree of h(X) is at most n− 2 by assumption. So the coefficient on
Xn−1 is zero. This is what we wanted to show.

(c) Back to GRS codes.

i. Show that RS(~α, n, k)⊥ = GRS(~λ; ~α, n, n− k) for some vector ~λ. What is ~λ, in terms of ~α?
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Solution

We can use part (b). Let λi = 1
Li(αi)

. Let f(X) be a degree < k polynomial corre-

sponding to a codeword c of the RS code, and let g(X) be a degree < n− k polynomial
corresponding to a codeword c′ of the GRS code with weights λi. Then the degree of
h(X) = f(X)g(X) is at most k− 1 + n− k− 1 = n− 2 < n− 1, so we apply part (b) to
h(X). We get that

n∑
i=1

cic
′
i =

n∑
i=1

f(αi)λig(αi) =
∑
i

f(αi)g(αi)

Li(αi)
= 0.

ii. More generally, show that GRS(~λ; ~α, n, k)⊥ = GRS(~σ; ~α, n, n− k) for some ~σ. What is ~σ, in

terms of ~λ and ~α?

Solution

The same proof as above works, but we should take σi = 1
λiLi(αi)

.

3. (Bonus, if time) Let n = q − 1 and suppose that f : Fq → Fq given by f(X) =
∑n−1
i=0 fiX

i and

g : Fq → Fq given by g(X) =
∑n−1
i=0 giX

i are polynomials that both vanish on γ, γ2, ..., γn−k, for a
primitive element γ of Fq. Prove that the polynomial h(X) given by

h(X) =

n−1∑
i=0

figiX
i

vanishes on γ, γ2, . . . , γn−2k+1.

Hint: There is a short proof using something from the lecture videos/notes...

Solution

By the dual view of RS codes, the coefficients fi of f(X) =
∑n−1
i=0 fiX

i are evaluations of a

polynomial f̃ of degree at most k − 1: that is, fi = f̃(αi) for i = 1, . . . , n. The same is true for g
and a degree-≤ k − 1 polynomial g̃. Thus, the coefficients hi = fi · gi are given by

hi = g̃(αi) · f̃(αi).

Now, the polynomial h̃(X) = f̃(X) · g̃(X) has degree at most 2k− 2, and so by the duality of RS
codes again, the polynomial h(X) vanishes on α, α2, . . . , αn−2k+1, as desired.
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