
Class 5 Exercises

CS250/EE387, Winter 2022

In this class, we’ll investigate/develop the Berlekamp-Massey Algorithm for decoding Reed-Solomon
codes. Some notation:

• We will be working with a RS code C ⊆ Fn
q with length n = q − 1 over Fq and with evaluation points

γ, γ2, . . . , γq−1.

• We will try to decode C from e errors. Suppose that v ∈ Fn
q is the received word, so v = c + p for

c ∈ C and p ∈ Fn
q is an error vector so that wt(p) ≤ e.

• Let p = (p0, . . . , pn−1) be the error vector, and let

E = {i : pi 6= 0}

be the locations of the errors.

• Let d = n− k+ 1 be the distance of the RS code, and assume that e ≤
⌊
d−1
2

⌋
, so that unique decoding

is possible.

Now onto the questions.

1. The first step of the Berlekamp-Massey algorithm is to compute the syndrome s = Hv, where H is the
parity-check matrix for C. Write s = (s1, . . . , sd−1), and let s(Z) =

∑d−1
i=1 siZ

i.

Show that

s(Z) =
∑
i∈E

pi

(
γiZ − (γiZ)d

1− γiZ

)
.

Hint. Use the structure of the parity-check matrix H, and first show that s(Z) =
∑

i∈E pi
∑d

`=1(γiZ)`.

2. Let σ(Z) =
∏

i∈E(1 − γiZ). Explain why we will be in good shape for decoding if we can figure out
what σ is.

3. Consider σ(Z) · s(Z). Show that this can be written as

σ(Z) · s(Z) = w(Z) + Zdr(Z),

where w(Z) and r(Z) are polynomials, and deg(w) ≤ e. Write down an expression for w(Z).

At this point please fill out the number poll to “3”.

4. Show that the following are true:

(a) For all r ∈ E, w(γ−r) = pr ·
∏

j∈E\{i}(1− γj−i).
At this point please fill out the number poll to “4(a)”.
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(b) (Optional:) w(Z) and σ(Z) are relatively prime. That is, there is no polynomial g(Z) (other
than g(Z) ≡ 1) that divides them both.

(Note: if you don’t feel like showing this, take it as given and skip this part; but we will probably
come back together as a class after problem 4, so if you get this far you may as well think about
it!).

At this point please fill out the number poll to “4(b)”.

5. The previous part implies that, for all r with e+ 1 ≤ r ≤ d− 1, we have

coefficient on Zr in s(Z)σ(Z) = 0.

What is that coefficient, in terms of the coefficients of s (which we know) and the coefficients of σ
(which we don’t know)? Write down a system of d− e− 1 linear constraints that the coefficients of σ
must satisfy. Your constraints should be in terms of the si. Explain why there is at least one solution
to this system of equations.

At this point please fill out the number poll to “5”.

6. Suppose we were to solve your system of equations to obtain (σ̃0, . . . , σ̃n−1) and a corresponding
polynomial σ̃(Z) =

∑e
i=0 σ̃iZ

i. Explain why we can write

s(Z)σ̃(Z) = w̃(Z) + Zdr̃(Z)

for some polynomials w̃(Z), r̃(Z) with deg(w̃) ≤ e.
At this point please fill out the number poll to “6”.

7. Show that σ̃(Z)w(Z) = σ(Z)w̃(Z).

Hint: Consider s(Z)σ(Z)σ̃(Z).

8. Explain how, given σ̃ and w̃, to find σ and w.

Hint: The answer to part of it is that σ(Z) = σ̃(Z)/gcd(σ̃, w̃)...but why?

Hint: Question 7, along with Part 4(b), might be useful.

At this point please fill out the number poll to “8”.

9. Put all the pieces together to write down an efficient (polynomial-time) algorithm to recover the
codeword c given v. What is the running time of your algorithm, in terms of the number of operations
over Fq? Do you see ways you might be able to speed it up?

If it helps, finding the gcd of two degree-D polynomials (with, say, Euclid’s algorithm) takes O(D2)
operations over Fq. Finding the roots of a degree-D polynomial in Fq can be done with O(D2 log q)
operations over Fq.
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