
Class 5 Exercises

CS250/EE387, Winter 2022

In this class, we’ll investigate/develop the Berlekamp-Massey Algorithm for decoding Reed-Solomon
codes. Some notation:

• We will be working with a RS code C ⊆ Fnq with length n = q − 1 over Fq and with evaluation points
γ, γ2, . . . , γq−1.

• We will try to decode C from e errors. Suppose that v ∈ Fnq is the received word, so v = c + p for
c ∈ C and p ∈ Fnq is an error vector so that wt(p) ≤ e.

• Let p = (p0, . . . , pn−1) be the error vector, and let

E = {i : pi 6= 0}

be the locations of the errors.

• Let d = n− k+ 1 be the distance of the RS code, and assume that e ≤
⌊
d−1
2

⌋
, so that unique decoding

is possible.

Now onto the questions.

1. The first step of the Berlekamp-Massey algorithm is to compute the syndrome s = Hv, where H is the
parity-check matrix for C. Write s = (s1, . . . , sd−1), and let s(Z) =

∑d−1
i=1 siZ

i.

Show that

s(Z) =
∑
i∈E

pi

(
γiZ − (γiZ)d

1− γiZ

)
.

Hint. Use the structure of the parity-check matrix H, and first show that s(Z) =
∑
i∈E pi

∑d
`=1(γiZ)`.

Solution

First, Hv = H(c + p) = Hp. Next, we know that Hj,i = γij where j is 1-indexed and i is
(obnoxiously) zero-indexed. Thus,

sj = j’th row of Hp

=

n−1∑
i=0

γijpi

1



and so

s(Z) =

d−1∑
j=1

sjZ
j

=

d−1∑
j=1

n−1∑
i=0

pjγ
ijZj

=

n−1∑
i=0

pi

d−1∑
j=1

(γiZ)j

=
∑
i∈E

pi

(
γiZ − (γiZ)d

1− γiZ

)
as desired.

2. Let σ(Z) =
∏
i∈E(1 − γiZ). Explain why we will be in good shape for decoding if we can figure out

what σ is.

Solution

We have i ∈ E ⇔ σ(γ−i) = 0. So if we find σ, we can factor it and find E. Once we know E, we
can, for example, treat the errors as erasures and just solve a linear system to find the original
codeword.

3. Consider σ(Z) · s(Z). Show that this can be written as

σ(Z) · s(Z) = w(Z) + Zdr(Z),

where w(Z) and r(Z) are polynomials, and deg(w) ≤ e. Write down an expression for w(Z).

At this point please fill out the number poll to “3”.

Solution

We can use our expression earlier for s(Z) to write

s(Z)σ(Z) =
∑
i∈E

pi(γ
iZ − (γiZ)d)

∏
j∈E\{i}

(1− γiZ).

(Essentially, we are using σ(Z) to clear the denominator in our expression for s(Z)). By staring,
this polynomial has the desired form, and

w(Z) =
∑
i∈E

piγ
iZ

∏
j∈E\{i}

(1− γiZ).

4. Show that the following are true:

(a) For all r ∈ E, w(γ−r) = pr ·
∏
j∈E\{i}(1− γj−i).

At this point please fill out the number poll to “4(a)”.

(b) (Optional:) w(Z) and σ(Z) are relatively prime. That is, there is no polynomial g(Z) (other
than g(Z) ≡ 1) that divides them both.

(Note: if you don’t feel like showing this, take it as given and skip this part; but we will probably
come back together as a class after problem 4, so if you get this far you may as well think about
it!).

At this point please fill out the number poll to “4(b)”.

2



Solution

(a) Plugging in γ−r, we have

w(γ−r) =
∑
i∈E

piγ
i−r

∏
j∈E\{i}

(1− γi−r).

The product vanishes unless i = r, so we are left with only the i = r term, which is

w(γ−r) = prγ
r−r

 ∏
j∈E\{i}

(1− γi−r)

 = pr
∏

j∈E\{i}

(1− γi−r)

as desired.

(b) Since σ(Z) factors completely, it suffices to show that (1 − γ−rZ) does not divide w(Z) for
any r ∈ E. But we just saw that for all r ∈ E, w(γ−r) = pr 6= 0, so γ−r is not a root of w,
so (1− γ−rZ) cannot divide it.

5. The previous part implies that, for all r with e+ 1 ≤ r ≤ d− 1, we have

coefficient on Zr in s(Z)σ(Z) = 0.

What is that coefficient, in terms of the coefficients of s (which we know) and the coefficients of σ
(which we don’t know)? Write down a system of d− e− 1 linear constraints that the coefficients of σ
must satisfy. Your constraints should be in terms of the si. Explain why there is at least one solution
to this system of equations.

At this point please fill out the number poll to “5”.

Solution

For each r, the coefficient on Zr in s(Z)σ(Z) is given by the convolution

coefficient on Zr =

e∑
i=0

σisr−i,

where σ(Z) =
∑e
i=0 σiZ

i. This gives us a system of equations

Se+1 Se Se−1 · · · S1

Se+2 Se+1 Se · · · S2

Se+3
. . .

. . .
...

Sd−1 Sd−2 Sd−2 · · · Sd−e−1

 ·


σ0
σ1
...
...

σn−1

 = ~0.

There is at least one solution to these equations, because σ is a solution!

6. Suppose we were to solve your system of equations to obtain (σ̃0, . . . , σ̃n−1) and a corresponding
polynomial σ̃(Z) =

∑e
i=0 σ̃iZ

i. Explain why we can write

s(Z)σ̃(Z) = w̃(Z) + Zdr̃(Z)

for some polynomials w̃(Z), r̃(Z) with deg(w̃) ≤ e.
At this point please fill out the number poll to “6”.

3



Solution

The system of linear equations that we solved to find σ̃ precisely says that all of the coefficients
of s(Z)σ̃(Z) between Ze+1 and Zd−1 (inclusive) are zero. Therefore, s(Z)σ̃(Z) has the desired
form.

7. Show that σ̃(Z)w(Z) = σ(Z)w̃(Z).

Hint: Consider s(Z)σ(Z)σ̃(Z).

Solution

Following the hint, we have

s(Z)σ(Z)σ̃(Z) = (s(Z)σ(Z))σ̃(Z) = (w(Z) + Zdr(Z))σ̃(Z) = w(Z)σ̃(Z) + Zd · [stuff].

Symmetrically,
s(Z)σ(Z)σ̃(Z) = w̃(Z)σ(Z) + Zd · [stuff]

′
.

Thus,
w̃(Z)σ(Z) = w(Z)σ̃(Z) + Zd · [stuff]

′′
,

for some (polynomial) value of [stuff]′′. Since w̃, w, σ̃, σ all have degree at most e, σ(Z)w̃(Z) and
σ̃(Z)w(Z) both have degree at most 2e, which is strictly less than d by our assumption on the
number of errors. Thus, the Zd · [stuff]

′′
term doesn’t collide with the lower-order terms, and we

conclude that
w̃(Z)σ(Z) = w(Z)σ̃(Z)

as desired.

8. Explain how, given σ̃ and w̃, to find σ and w.

Hint: The answer to part of it is that σ(Z) = σ̃(Z)/gcd(σ̃, w̃)...but why?

Hint: Question 7, along with Part 4(b), might be useful.

At this point please fill out the number poll to “8”.

Solution

The previous part implies that
w̃(Z)

σ̃(Z)
=
w(Z)

σ(Z)
.

Since w(Z) and σ(Z) are relatively prime, they have no common factors. Thus, if we reduce the

fraction w̃(Z)
σ̃(Z) by dividing out any common factors, what we are left with must be the rational

function w(Z)
σ(Z) , and we know that the numerator must be w and the denominator must be σ.

9. Put all the pieces together to write down an efficient (polynomial-time) algorithm to recover the
codeword c given v. What is the running time of your algorithm, in terms of the number of operations
over Fq? Do you see ways you might be able to speed it up?

If it helps, finding the gcd of two degree-D polynomials (with, say, Euclid’s algorithm) takes O(D2)
operations over Fq. Finding the roots of a degree-D polynomial in Fq can be done with O(D2 log q)
operations over Fq.

Solution

Here’s an algorithm:

4



• Find the syndrome s = Hv.

• Solve the system of linear equations that we came up with above (which only depends on s,
which we just found) to find σ̃(Z).

• Let w̃(Z) = s(Z)σ̃(Z) mod Zd.

• Compute g(Z) = gcd(w̃(Z), σ̃(Z)).

• Let σ(Z) = σ̃(Z)/g(Z) and let w(Z) = w̃(Z)/g(Z).

• Find the roots of σ(Z) =
∏
i∈E(1− γiZ) to find E.

• For i ∈ E, let

pi =
w(γ−i)∏

j∈E\{i}(1− γj−i)
.

For i 6∈ E, let pi = 0.

• Return c = v − p.
The running time, calculated as number of operations over Fq, is (naively):

• O(nd) operations to compute the syndrome.

• O(d3) operations to solve our ≈ d× d linear system.

• O(ed) = O(d2) to multiply s(Z) with σ̃(Z) and chop off the end to get w̃(Z).

• O(d2) operations to take the GCD and reduce the fraction w̃(Z)/σ̃(Z).

• O(d2 log q) to find the roots of σ(Z).

• O(d2 log d) operations to evaluate w(Z) on e = O(d) points. (This is O(d log d) per point,
since there are O(d) terms to add up, and each term takes O(log d) operations to compute by
repeated squaring).

• O(n) to finally compute c and return it.

So the total is something like O(nd+ d3 + d2 log n) = npoly(d) operations over Fq. (FWIW, each
operation over Fq can be performed in something like O(log2(n)) time).

There are several ways to speed this up. Most notably, the linear system that we are solving is very
structured – the matrix is actually a Toeplitz matrix, and there are fast algorithms for solving such
systems. This can reduce the running time to something like O(nd+d log2(d) log log(d)+d2 log n)
operations over Fq. Note that if d � n and we already have the syndrome computed, we can
actually compute a description of the error vector p in sublinear time in n!

5


