Class 5 Exercises

CS250/EE387, Winter 2022

In this class, we'll investigate/develop the Berlekamp-Massey Algorithm for decoding Reed-Solomon codes. Some notation:

- We will be working with a RS code $C \subseteq \mathbb{F}_q^n$ with length $n = q 1$ over \mathbb{F}_q and with evaluation points $\gamma, \gamma^2, \ldots, \gamma^{q-1}.$
- We will try to decode C from e errors. Suppose that $v \in \mathbb{F}_q^n$ is the received word, so $v = c + p$ for $c \in C$ and $p \in \mathbb{F}_q^n$ is an error vector so that $\text{wt}(p) \leq e$.
- Let $p = (p_0, \ldots, p_{n-1})$ be the error vector, and let

$$
E=\{i\,:\, p_i\neq 0\}
$$

be the locations of the errors.

• Let $d = n - k + 1$ be the distance of the RS code, and assume that $e \leq \lfloor \frac{d-1}{2} \rfloor$, so that unique decoding is possible.

Now onto the questions.

1. The first step of the Berlekamp-Massey algorithm is to compute the *syndrome* $s = Hv$, where H is the parity-check matrix for C. Write $s = (s_1, \ldots, s_{d-1})$, and let $s(Z) = \sum_{i=1}^{d-1} s_i Z^i$.

Show that

$$
s(Z) = \sum_{i \in E} p_i \left(\frac{\gamma^i Z - (\gamma^i Z)^d}{1 - \gamma^i Z} \right).
$$

Hint. Use the structure of the parity-check matrix H, and first show that $s(Z) = \sum_{i \in E} p_i \sum_{\ell=1}^d (\gamma^i Z)^{\ell}$.

Solution

First, $Hv = H(c + p) = Hp$. Next, we know that $H_{j,i} = \gamma^{ij}$ where j is 1-indexed and i is (obnoxiously) zero-indexed. Thus,

$$
s_j = j'th \text{ row of } Hp
$$

$$
= \sum_{i=0}^{n-1} \gamma^{ij} p_i
$$

and so

$$
s(Z) = \sum_{j=1}^{d-1} s_j Z^j
$$

=
$$
\sum_{j=1}^{d-1} \sum_{i=0}^{n-1} p_j \gamma^{ij} Z^j
$$

=
$$
\sum_{i=0}^{n-1} p_i \sum_{j=1}^{d-1} (\gamma^i Z)^j
$$

=
$$
\sum_{i \in E} p_i \left(\frac{\gamma^i Z - (\gamma^i Z)^d}{1 - \gamma^i Z} \right)
$$

as desired.

2. Let $\sigma(Z) = \prod_{i \in E} (1 - \gamma^i Z)$. Explain why we will be in good shape for decoding if we can figure out what σ is.

Solution

We have $i \in E \Leftrightarrow \sigma(\gamma^{-i}) = 0$. So if we find σ , we can factor it and find E. Once we know E, we can, for example, treat the errors as erasures and just solve a linear system to find the original codeword.

3. Consider $\sigma(Z) \cdot s(Z)$. Show that this can be written as

$$
\sigma(Z) \cdot s(Z) = w(Z) + Z^d r(Z),
$$

where $w(Z)$ and $r(Z)$ are polynomials, and $\deg(w) \leq e$. Write down an expression for $w(Z)$.

At this point please fill out the number poll to "3".

Solution

We can use our expression earlier for $s(Z)$ to write

$$
s(Z)\sigma(Z) = \sum_{i \in E} p_i(\gamma^i Z - (\gamma^i Z)^d) \prod_{j \in E \setminus \{i\}} (1 - \gamma^i Z).
$$

(Essentially, we are using $\sigma(Z)$ to clear the denominator in our expression for $s(Z)$). By staring, this polynomial has the desired form, and

$$
w(Z) = \sum_{i \in E} p_i \gamma^i Z \prod_{j \in E \setminus \{i\}} (1 - \gamma^i Z).
$$

- 4. Show that the following are true:
	- (a) For all $r \in E$, $w(\gamma^{-r}) = p_r \cdot \prod_{j \in E \setminus \{i\}} (1 \gamma^{j-i}).$ At this point please fill out the number poll to " $4(a)$ ".
	- (b) (Optional:) $w(Z)$ and $\sigma(Z)$ are relatively prime. That is, there is no polynomial $g(Z)$ (other than $q(Z) \equiv 1$) that divides them both.

(Note: if you don't feel like showing this, take it as given and skip this part; but we will probably come back together as a class after problem 4, so if you get this far you may as well think about it!).

At this point please fill out the number poll to "4(b)".

Solution

(a) Plugging in γ^{-r} , we have

$$
w(\gamma^{-r}) = \sum_{i \in E} p_i \gamma^{i-r} \prod_{j \in E \setminus \{i\}} (1 - \gamma^{i-r}).
$$

The product vanishes unless $i = r$, so we are left with only the $i = r$ term, which is

$$
w(\gamma^{-r}) = p_r \gamma^{r-r} \left(\prod_{j \in E \setminus \{i\}} (1 - \gamma^{i-r}) \right) = p_r \prod_{j \in E \setminus \{i\}} (1 - \gamma^{i-r})
$$

as desired.

- (b) Since $\sigma(Z)$ factors completely, it suffices to show that $(1 \gamma^{-r} Z)$ does not divide $w(Z)$ for any $r \in E$. But we just saw that for all $r \in E$, $w(\gamma^{-r}) = p_r \neq 0$, so γ^{-r} is not a root of w, so $(1 - \gamma^{-r} Z)$ cannot divide it.
- 5. The previous part implies that, for all r with $e + 1 \le r \le d 1$, we have

coefficient on
$$
Z^r
$$
 in $s(Z)\sigma(Z) = 0$.

What is that coefficient, in terms of the coefficients of s (which we know) and the coefficients of σ (which we don't know)? Write down a system of $d - e - 1$ linear constraints that the coefficients of σ must satisfy. Your constraints should be in terms of the s_i . Explain why there is at least one solution to this system of equations.

At this point please fill out the number poll to "5".

Solution

For each r, the coefficient on Z^r in $s(Z)\sigma(Z)$ is given by the convolution

coefficient on
$$
Z^r = \sum_{i=0}^e \sigma_i s_{r-i}
$$
,

where $\sigma(Z) = \sum_{i=0}^{e} \sigma_i Z^i$. This gives us a system of equations

$$
\begin{pmatrix}\nS_{e+1} & S_e & S_{e-1} & \cdots & S_1 \\
S_{e+2} & S_{e+1} & S_e & \cdots & S_2 \\
S_{e+3} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
S_{d-1} & S_{d-2} & S_{d-2} & \cdots & S_{d-e-1}\n\end{pmatrix}\n\cdot\n\begin{pmatrix}\n\sigma_0 \\
\sigma_1 \\
\vdots \\
\sigma_{n-1}\n\end{pmatrix} = \vec{0}.
$$

There is at least one solution to these equations, because σ is a solution!

6. Suppose we were to solve your system of equations to obtain $(\tilde{\sigma}_0, \ldots, \tilde{\sigma}_{n-1})$ and a corresponding polynomial $\tilde{\sigma}(Z) = \sum_{i=0}^{e} \tilde{\sigma}_i Z^i$. Explain why we can write

$$
s(Z)\tilde{\sigma}(Z) = \tilde{w}(Z) + Z^d \tilde{r}(Z)
$$

for some polynomials $\tilde{w}(Z), \tilde{r}(Z)$ with $\deg(\tilde{w}) \leq e$.

At this point please fill out the number poll to "6".

Solution

The system of linear equations that we solved to find $\tilde{\sigma}$ precisely says that all of the coefficients of $s(Z)\tilde{\sigma}(Z)$ between Z^{e+1} and Z^{d-1} (inclusive) are zero. Therefore, $s(Z)\tilde{\sigma}(Z)$ has the desired form.

7. Show that $\tilde{\sigma}(Z)w(Z) = \sigma(Z)\tilde{w}(Z)$.

Hint: Consider $s(Z)\sigma(Z)\tilde{\sigma}(Z)$.

Solution

Following the hint, we have

$$
s(Z)\sigma(Z)\tilde{\sigma}(Z) = (s(Z)\sigma(Z))\tilde{\sigma}(Z) = (w(Z) + Z^d r(Z))\tilde{\sigma}(Z) = w(Z)\tilde{\sigma}(Z) + Z^d \cdot [\text{stuff}].
$$

Symmetrically,

$$
s(Z)\sigma(Z)\tilde{\sigma}(Z) = \tilde{w}(Z)\sigma(Z) + Z^d \cdot [\text{stuff}']'.
$$

Thus,

$$
\tilde{w}(Z)\sigma(Z) = w(Z)\tilde{\sigma}(Z) + Z^d \cdot [\text{stuff}]'',
$$

for some (polynomial) value of $[\text{stuff}]''$. Since $\tilde{w}, w, \tilde{\sigma}, \sigma$ all have degree at most e, $\sigma(Z)\tilde{w}(Z)$ and $\tilde{\sigma}(Z)w(Z)$ both have degree at most 2e, which is strictly less than d by our assumption on the number of errors. Thus, the Z^d [stuff]^{$''$} term doesn't collide with the lower-order terms, and we conclude that

$$
\tilde{w}(Z)\sigma(Z) = w(Z)\tilde{\sigma}(Z)
$$

as desired.

8. Explain how, given $\tilde{\sigma}$ and \tilde{w} , to find σ and w.

Hint: The answer to part of it is that $\sigma(Z) = \tilde{\sigma}(Z)/\gcd(\tilde{\sigma}, \tilde{w})$...but why?

Hint: Question 7, along with Part [4\(](#page-1-0)b), might be useful.

At this point please fill out the number poll to "8".

Solution

The previous part implies that

$$
\frac{\tilde{w}(Z)}{\tilde{\sigma}(Z)} = \frac{w(Z)}{\sigma(Z)}.
$$

Since $w(Z)$ and $\sigma(Z)$ are relatively prime, they have no common factors. Thus, if we reduce the fraction $\frac{\tilde{w}(Z)}{\tilde{\sigma}(Z)}$ by dividing out any common factors, what we are left with must be the rational function $\frac{w(Z)}{\sigma(Z)}$, and we know that the numerator must be w and the denominator must be σ .

9. Put all the pieces together to write down an efficient (polynomial-time) algorithm to recover the codeword c given v . What is the running time of your algorithm, in terms of the number of operations over \mathbb{F}_q ? Do you see ways you might be able to speed it up?

If it helps, finding the gcd of two degree-D polynomials (with, say, Euclid's algorithm) takes $O(D^2)$ operations over \mathbb{F}_q . Finding the roots of a degree-D polynomial in \mathbb{F}_q can be done with $O(D^2 \log q)$ operations over \mathbb{F}_q .

Solution

Here's an algorithm:

- Find the syndrome $s = Hv$.
- Solve the system of linear equations that we came up with above (which only depends on s , which we just found) to find $\tilde{\sigma}(Z)$.
- Let $\tilde{w}(Z) = s(Z)\tilde{\sigma}(Z) \mod Z^d$.
- Compute $g(Z) = \gcd(\tilde{w}(Z), \tilde{\sigma}(Z)).$
- Let $\sigma(Z) = \tilde{\sigma}(Z)/g(Z)$ and let $w(Z) = \tilde{w}(Z)/g(Z)$.
- Find the roots of $\sigma(Z) = \prod_{i \in E} (1 \gamma^i Z)$ to find E.
- For $i \in E$, let

$$
p_i = \frac{w(\gamma^{-i})}{\prod_{j \in E \setminus \{i\}} (1 - \gamma^{j-i})}
$$

.

For $i \notin E$, let $p_i = 0$.

• Return $c = v - p$.

The running time, calculated as number of operations over \mathbb{F}_q , is (naively):

- $O(nd)$ operations to compute the syndrome.
- $O(d^3)$ operations to solve our $\approx d \times d$ linear system.
- $O(ed) = O(d^2)$ to multiply $s(Z)$ with $\tilde{\sigma}(Z)$ and chop off the end to get $\tilde{w}(Z)$.
- $O(d^2)$ operations to take the GCD and reduce the fraction $\tilde{w}(Z)/\tilde{\sigma}(Z)$.
- $O(d^2 \log q)$ to find the roots of $\sigma(Z)$.
- $O(d^2 \log d)$ operations to evaluate $w(Z)$ on $e = O(d)$ points. (This is $O(d \log d)$ per point, since there are $O(d)$ terms to add up, and each term takes $O(\log d)$ operations to compute by repeated squaring).
- $O(n)$ to finally compute c and return it.

So the total is something like $O(nd + d^3 + d^2 \log n) = n \text{poly}(d)$ operations over \mathbb{F}_q . (FWIW, each operation over \mathbb{F}_q can be performed in something like $O(\log^2(n))$ time).

There are several ways to speed this up. Most notably, the linear system that we are solving is very structured – the matrix is actually a Toeplitz matrix, and there are fast algorithms for solving such systems. This can reduce the running time to something like $O(nd + d\log^2(d)\log\log(d) + d^2\log n)$ operations over \mathbb{F}_q . Note that if $d \ll n$ and we already have the syndrome computed, we can actually compute a description of the error vector p in sublinear time in $n!$