Class 8 Exercises

CS250/EE387, Winter 2022

1. In the lecture videos/notes, we saw the "Kautz-Singleton" construction for group testing matrices, and we instantiated it using RS codes. Say that $N = 300$ and $d = 2$ and you want to build a group testing matrix like this. How will you choose parameters for q, k ? What will your final group testing matrix look like? How many tests does it use? (Note: you may need to come up with a group testing matrix for $N' > N$ items, and then drop some items, since 300 is not a power of a prime).

Solution

Following the Note, let's take $N' = 343 = 7^3$. Then we can choose $q = 7$, and $k = |q/d|$ $|7/2|=3$. Then $N'=q^{\lfloor q/d\rfloor}=7^3=343$. Then we'll just drop 43 of the items to get 300. The number of tests is q^2 , which is 49.

The final matrix is 49×300 , where each of the 300 columns are associated with a polynomial of degree at most 2 over \mathbb{F}_7 , and each of the rows are associated with a pair of numbers (i, j) for $i, j \in \{0, 1, \ldots, 6\}$. The entry indexed by (i, j) and f is 1 if $f(i) = j \mod 7$ and 0 otherwise.

- 2. In this problem we will adapt the Kautz-Singleton construction from the lecture videos/notes to deal with false negatives and false positives. The set-up is the same: we have N items, at most d of which are positive, and we wish to make T tests. However, now there may be up to E false negatives and E false positives. (Here, a "false positive" is a test that does not contain any positive items but comes up positive anyway; a "false negative" is a test that does contain a positive item but comes up negative).
	- (a) Come up with a condition that is similar to d-disjunctness and prove a statement like "if a pooling matrix Φ satisfies [your condition], then Φ can identify up to d positive items, even with up to E false positives and E false negatives. Assume that the false negatives/positives are worst-case.

Solution

A natural condition is the following:

Definition 1. A matrix $\Phi \in \{0,1\}^{T \times N}$ is (d, E) -disjunct if for any set $\Lambda \subseteq [N]$ of size d, and any other $i \in [N] \setminus \Lambda$, there are at least $2E + 1$ values of $j \in [T]$ so that $\Phi_{j,i} = 1$ and $\Phi_{j,r} = 0$ for all $r \in \Lambda$.

Now we'll prove that this definition is enough to identify up to d positive items, even with E false positives/negatives. As in the lecture videos/notes, we'll do a proof by algorithm. Here is the algorithm:

• For $i \in [N]$:

- $-$ If all but E of i's tests come up positive, declare that i is positive.
- $-$ Otherwise, declare that i is negative.

Now we prove that this algorithm works. Suppose that i is indeed positive. Then all of i 's tests *should* come up positive, but there might be E false negatives, so all but E tests will come up positive, and we will say that i is positive. Now suppose that i were negative, and Λ is the set of true positives. Then by the disjunctness requirement, there are at least $2E+1$

tests that i is involved in that *should* come up negative. At most E of these can come up positive due to the false positives. So there are still $E + 1$ tests that i is involved in that come up negative. Therefore we do not declare i to be positive.

(b) Adapt the Kautz-Singleton argument to show that RS-code-based group testing schemes can handle false positives/negatives. How do the parameters depend on E ? (Note: you don't need to change the construction, just the parameters). Your final answer should be of the form "the number of tests T needs to be at least [some function of N, d, and E]."

Solution

Copying the K-S argument, let C be an RS code with dimension k and length $n = q$. Consider the matrix $\Phi \in \{0,1\}^{T \times N}$ where $N = q^k$ items, and $T = q^2$. Thus, we have $k = \log_q(N)$ and $q=\sqrt{T}$.

Let Λ be any set and let i be any other item. The i'th column of Φ can agree with any other in at most k places, by the distance of the RS code. Thus, provided that $q \geq dk + 2E + 1$, there are at least $2E + 1$ evaluation points of the RS code where codeword i does not agree with any of the codewords in Λ , which translates to there being at least $2E+1$ elements j of [T] so that $\Phi_{j,i} = 1$ and $\Phi_{j,r} = 0$ for all $r \in \Lambda$. (I am omitting some details here, it is exactly the same as the argument in the lecture notes). Thus, if $q \geq dk + 2E + 1$, our testing matrix is (d, E) -disjunct.

Working out the parameters, we need

$$
\sqrt{T} = q \ge dk + 2E + 1 = d \log_q(N) + 2E + 1
$$

or

$$
T \ge \left(d \log_q(N) + 2E + 1\right)^2.
$$

As in class, we have $q \geq d$, so it suffices to take

$$
T \ge (d \log_d(N) + 2E + 1)^2.
$$

Notice that if E is small compared to $d \log_d(N)$, this doesn't asymptotically affect the answer that we got before with no false positives/negatives. However, if $E \gg d \log_d(N)$, then the $T \geq E^2$ term starts to dominate.

3. (Bonus – if you finish early, here's something else to work on!) Can you come up with a way to set parameters in the Kautz-Singleton construction to get good results when, say, $d = N/100$? (Notice that the bound of $d^2 \log N$ isn't great in this parameter regime...) What's the best group testing scheme you can come up with in this setting? (Don't worry about false postives/negatives). What's a natural lower bound on the number of tests you would need?

Solution

This one's a bit open-ended. The KS construction doesn't work well. A natural lower bound is $\log {N \choose d} \approx \log((eN/d)^d) = \frac{N}{100} \cdot \log(100 \cdot e)$ bits. I'm actually not sure what the best construction is here!

4. (Bonus – if you finish early, here's something else to work on!) Say that a group testing matrix $\Phi \in \{0,1\}^{t \times N}$ is "d-good" if it can identify up to d defective items. More precisely, for $d < N$, $\Phi \in \{0,1\}^{t \times N}$ is d-good iff the map from sets $T \subset [N]$ with $|T| \leq d$ to outcomes in $\{0,1\}^t$ given by

$$
T \mapsto \left(\bigvee_{i \in T} \Phi_{1,i}, \bigvee_{i \in T} \Phi_{2,i}, \dots, \bigvee_{i \in T} \Phi_{t,i}\right)
$$

is injective.

In class we proved that if $\Phi \in \{0,1\}^{t \times N}$ is *d-disjunct*, then it is *d*-good.

(a) Show that for $d = 2$, there are matrices that are d-good but not d-disjunct. (It's okay if you show this by giving a somewhat silly example).

> 1 \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I}

(b) Show that any d-good matrix is $(d-1)$ -disjunct.

Solution

(a) Consider

This matrix is 2-good, since the possible outcomes are:

 $\emptyset \to (0, 0, 0, 0, 0)$ $(1, 0, 0) \rightarrow (1, 0, 1, 0, 0)$ $(0, 1, 0) \rightarrow (0, 1, 0, 1, 1)$ $(0, 0, 1) \rightarrow (1, 1, 0, 0, 1)$ $(1, 1, 0) \rightarrow (1, 1, 1, 0, 0)$ $(1, 0, 1) \rightarrow (1, 1, 1, 0, 1)$ $(0, 1, 1) \rightarrow (1, 1, 0, 1, 1)$

and all of these outcomes are different. However, it's not 2-disjunct, since the third column is covered by the union of the first two. This is a bit silly since it's tall and skinny. If you want to make this example less silly, you can do that: if the matrix above is called M , then consider the block matrix

 $\begin{bmatrix} M & 0 \end{bmatrix}$ 0Φ 1

where $\bar{\Phi}$ is a large 2-disjunct matrix. Then you'll get a matrix that is short and fat and still serves as a counter-example.

(b) Suppose that Φ is d good. Let $T \subseteq [N]$ be any set of size at most $d-1$, and let $i \notin T$ be any other index. Then by the definition of good, the outcomes of the tests for T and for $T \cup \{i\}$ are distinct. But this means that there's some index j so that $\bigvee_{\ell \in T} \Phi_{j,\ell} = 0$ and $\bigvee_{\ell \in T \cup \{i\}} \Phi_{j,\ell} = 1$, which means that $\Phi_{j,i} = 1$ and $\Phi_{j,\ell} = 0$ for all $\ell \in T$. Thus, Φ is $(d-1)$ -disjunct.