CS 250/EE387 - LECTURE 12 - LIST RECOVERY

AGENDA

-
- ② APPLICATIONS !
	- -
	- Applications to list-DECODING...
	- Heavy hitters, two ways.
	- Cute approach to IP-traceback.

Recall that last time weproved :

TODAY'S OCTOPUS FACT

" Octopus " comes fromthe Greek and TTOÚS (foot) and the Greek plural would be Actually, I think you'll find O LIST - RECOVERY (Actually, Ithink you'll find) "octopodes!" The traditionally
that it's "octopodooza", from) accepted English plural is "octopus accepted English plural is " octopuses . " It's tempting to pluralize it as "aclopi" but that is not generally Subhnear - time GroupTesting (HW) CCP accepted since "octopus" in
Applications to list - DECODING ... COUSE a second-declension noon " octopus " in Latin since it came from the Greek-achially isn't Chopi", but that is not
accepted since "octopus" in
Since it ame from the Greek -
a second-declension noon All this has led to an amazing example of being stuck up about grammar while simultaneously shaming peoplewho are too stuck up about grammar: Towler's Modern English Usage says that the only acceptable plural is " octopuses, " and that "octopi" is misconceived, while " Octopods" is pedantic .

CS 250 / EE 387 - LECTURE 12 - LIST RECOVER

AGENDA

CLIST - RECOVERY

CO LIST - RECOVERY

CO LIST - RECOVERY

CO LIST - RECOVERY

CAPITIONS:

- Systems Computer States Computer States Computer States Computer States Comp THM. For all $r > 0$, RS codes of rate R are $(1 \sqrt{R(I+Y)},$ \sqrt{R} List-decodable, List-decodable, and the Guruswami-Sudan algorithment of the Guruswami-Sudan algorithment of the Cando the list-decoding in time poly(n,r). CS 250/EE387 - LECTURI
AGENDA
D LIST-RECOVERY
D APRILCATIONS!
- Subhaso-time Group Testing (HW)
- Applications to list-DECOVING...
- Many inflers, two ways.
- Cute exproach to IP-traceled.
- Cute exproach to IP-traceled.
 M. For all r > 0,
List-decodeble
Can do the
Ve did this via the
Gueuswami-Suoan Agoeinti
Choose a parameter r
Suppose t = Tkn(1+ - Suchineer-time Cycle pesting (HW)
- Applications to list - DECDIMQ...
- Heavy hilfers, two ways.
- Cute approach to IP-tracheck.
- Cute approach to IP-tracheck.
- Cute approach to IP-tracheck.
- Cute approach to IP-trac

We did this via the following algorithm: .
•

GURUSWAMI -SUDAN ALGORITHM.

Choose a parameter r Suppose $t \ge$ ALGORITHM.
Zder T
J kn (1+1/c)

- 1. INTERPULATION
Find a polyno
So that $\mathbb{Q}(\chi,\gamma)$ with (1,k)-degree \sum = $\sqrt{k}n\cdot r\cdot (r+1)$
«...y.) = 0 with multiplicity r for i=1,...,n.
- In the second control of the second 2. ROOT -FINDING STEP. Return all f so that $Q(\chi, f(x)) \equiv 0$. [Notice that there are \leq deg $_{\gamma}$ (Q) \leq D/q \leq \sim $\gamma_{\mathcal{R}}$ of these.]

OBSERVATION: There is no reason that the α_i 's need to be distinct.

What we actually proved was:

Tim	Let	$\Sigma (\alpha_i, y_i)$	$i = 1, ..., M$	ΣF_{11}^{-2}	be any subset 3.
Then there is an efficient algorithm, which will return all polynomials $f(X)$ of degree $\langle x, x \rangle$ of $\langle x \rangle$.	Equation 100				
$f(\alpha_i) = y_i$	for at least	$t \ge \sqrt{Mk(1 + Y_i)}$	is.		
Moreover, there are at most	$r \cdot \frac{M}{R}$	such polynomials.			
Before	$M = n$.	But	$l + might$ be useful to have	$M > n$... for example, if two i 's are not distinct.	
DEF.	A code $C \subseteq F_{t_1}^{-n}$ is	$(\frac{t}{r}, l, L) - LIST-RE(CVERBUE if)$			
For all	$S_1, S_2, ..., S_n \subseteq F_{t_n}$ with $ S_i \leq l$	Yi			
1	For all	$S_1, S_2, ..., S_n \subseteq F_{t_n}$ with $ S_i \leq l$	Yi		
1	For all	$S_1, S_2, ..., S_n \subseteq F_{t_n}$ with $ S_i \leq l$	Yi		
1	1	l is $\frac{1}{2}$	2		
1	1	l is $\frac{1}{2}$	2		
1	1	l is $\frac{1}{2}$			

In the context of RS codes, the picture is this:

And, the Gunswemi-Suden algorithm precisely solves this problem!

COR.	RS ₁ (n,k) is $(\frac{6}{n},l,l)$ -list-recovered to as long as
$t > \sqrt{ln k}$ and $L \ge 2(n \cdot l)^{3/2}k$	
Prof:	Replace M by. n.1 and choose. $r = 2n l k$.
Some Nons Aeour Liss recovery is interesting even if $t = n$.	
2. If $l = 1$, this is just list-decoding again	
3. We need $L \ge l$ Emb ?	
4. The run above for RS codes requires $R \le 4/1$, since it was $t = n$, and we can need $n > \sqrt{mk}$.	
5. That turns out to be tight for RS codes... but we can do better for obvar codes!	
5. Two that there exist high-rate (l, L) -list-recorolds codes for reasonable.	
1. How Exercise:	
1. How three exist high-rate (l, L) -list-recorolds codes for reasonable.	
1. How three exists. The sum of the two cases is the second set of the two cases.	
1. How there exists.	
1. How there exists:	
1. How there exists at least <	

la contra la contra . :
Show that RS codes of high rate are NOT (s_1L)-list
FHINT: BCH codes from a big list of codewoods whose symbols all live in smaller lists.]

The GOOD THING about this:

- we can tolerate way more error than we could without this expander trick (it's " distance amplification")

The BAD THING: - The rate takes a factor- of-d hit.

But! You can fix that other thing and use this framework to get constant-rate codes that correct a (1-2) fraction of errors * in LINEAR time [Gunuswami-Indyk'03] The GOOD THING about this:

- we can tolerate way more error than we could writhout

exponder trick (it's "distance amplification")

The BAD THING:

- The rale takes a factor of d frif.

But: You can fix that other thing

* Over large alphabets, and the Subsequent work has used a similar in " constant rate" is h amework to get rate R, list-clecodable 2 $2^{-200^{\circ} \epsilon^{3}}$ up to a 1- R fraction of errors. COTHING about this:

We can tolerate way more error than we could with

exporter trick (it's "distance amplification")

AD THING:

- The rale takes a fuctor of d hit.

The rale takes a fuctor of d hit.

You can fix that ot GOOD THING about this:
- we can tolerate way more error than we could
expansion incidents with the "distance amplification")
- BAD THING:
- The rale takes a foctor of d foit.
- The rale takes a foctor of d this fameword
c

APPLICATION 2. HEAVY HITTERS. (" universe " iverse"

PROBLEM. Given a data stream $x_1, x_2, ..., x_m$, where $x_i \in \mathcal{U}$, IN 2. HEAVY HITTERS.

EM. Given a deta stream $X_1, X_2, ..., X_m$, where

where $|U| = N$, find all the X so that $\{ \{ \} \}$

Store a histogram $(f_1, f_2, ..., f_N)$ which counts the #d

Or, just store $x_{1}, ..., x_m$ and do the count on th

Easy! Shore a histogram $(\mathfrak{f}_1, \mathfrak{f}_2, ..., \mathfrak{f}_N)$ which counts the # ofelements. Or, just store x_1, \ldots, x_m and do the count on the fly.

Such an \times is called an "E-heavy-hiller."

v

(ATCH . You have limited (say logarithmic) space.

Hard! Actually you need $\Omega(N)$ space to solve this problem in.

NEW PROBLEM. (Appende, probable heavy hilders)
\nGiven cases to a data stream
$$
x_{1,1} - x_m \in \mathcal{U}
$$
, with $|U|=N$,
\nfind a set $S \in \mathcal{U}$ so that, with probability 99/100 :
\n \sqrt{x} with $|Z_{1}|x_{1} = x_{1}|3 \le m$, $x \in S$
\n \sqrt{x} with $|Z_{1}|x_{1} = x_{1}|3 \le \varepsilon m$, $x \in S$
\n \sqrt{x} with $|Z_{1}|x_{1} = x_{1}|3 \le \varepsilon m$, $x \in S$
\n \sqrt{x} is a following as to return a squared of those, with some failure
\nprobability.
\nThis is D-ABLE?
\nHres a class is shown, called **Count-MIN-SKETCH**.
\nLet T = $\bigcup_{k=1}^{\infty} (N)$
\nDAN SRUCURE:
\n- Arrays A_{1, ...,} A_T, each of length 4/ε, initially of the graph "Consider"

and return all the things with big estimates.

Picture looks like this: y y z yyywxyyy...

Each bucket just shores the count of the $*$ items in it.

Now, HOPEFULLY, each heavy hitter is " reasonably " isolated in at least one bucket (in that no other heavy hitter lands there too), and then the min is a good bet .

FUN EXERCISE : Show that this works Whp . (tf, say , the hash hrs are uniformly random, although you don't really need "that).

 $SPACE : \bigcup \left(\frac{\Gamma \log(m)}{\epsilon} \right) \approx \frac{\log(N)}{\epsilon}$ Note 1. Cheating bk we also need to store MP. If, say, the hash firs are uniformly random,
although you don't really need θ fhat).
 $log(N) log(m)$ Nore 1. Cheating bic we also need to store
 $frac{\theta_{i} s_{i}}{\epsilon}$, but it turns out thats ok
Nore 2. Gaimprove this to $log(N)$, l $\frac{5}{1000}$ the his, but it himsout thats ok. NOTEZ. Ganimprove thisto $\frac{|q(N)|}{\epsilon}$ + $\frac{|q(N)|}{\epsilon}$ T arruys w/ Ol'E) buckets each , and each bucket holds

THIS IS AN AWESOME DATA STRUCTURE Strikerally my FAVORITE

But as presented there are 2 things list recovery can help with.

an int in Em]

④ Under an additional assm, we can make this DETERMINISTIC-' EXACT. See ENelson, Nguyễn, Woodruff '14] for nonexact deterministic, w/ space O.(1gN)

time $\binom{2\beta}{ }$ Better query

There are belier algs out there, but this one is real cute and uses RS codes.

2A DETERMINISTIC CONSTRUCTION.

The randomized part is the ... with a Reed-Sdomor code!	
... with a Reed-Sdomor code!	
CDEA. Fix $\alpha_{1}, \dots, \alpha_{k} \in \mathbb{F}_{q}$, say $\alpha_{1} \in \mathbb{F}_{q}$, say $\alpha_{1} \in \mathbb{F}_{q}$.	
2et: $\theta_{k} \in \mathbb{F}_{q} \times \mathbb{F}_{q}$.	1. $\theta_{k} \in \mathbb{F}_{q}$, $\theta_{k} \in \mathbb{F}_{q}$.
3et: $\theta_{k} \in \mathbb{F}_{q}$ for $\theta_{k} \in \mathbb{F}_{q}$, $\theta_{k} \in \mathbb{F}_{q}$, $\theta_{k} \in \mathbb{F}_{q}$.	
3et: $\theta_{k} \in \mathbb{F}_{q}$ for $\theta_{k} \in \mathbb{F}_{q}$, $\theta_{k} \in \mathbb{F}_{q}$, $\theta_{k} \in \mathbb{F}_{q}$.	
3et: $\theta_{k} \in \mathbb{F}_{q}$ for $\theta_{k} \in \mathbb{F}_{q}$, $\theta_{k} \in \mathbb{F}_{q}$, $\theta_{k} \in \mathbb{F}_{q}$.	1. $\theta_{k} \in \mathbb{F}_{q}$ for $\theta_{k} \in \mathbb{F}_{q}$.
3det: $\theta_{k} \in \mathbb{F}_{q}$ for $\theta_{k} \in \mathbb{F}_{q}$.	1. $\theta_{k} \in \mathbb{F}_{q}$.
3det: $\theta_{k} \in \mathbb{F}_{q}$ for $\theta_{k} \in \mathbb{F}_{q}$.	1. $\theta_{k} \in \mathbb{F}_{q}$ for $\theta_{k} \in \mathbb{F}_{q}$.
3det: $\theta_{k} \in \mathbb{F}_{q}$ for $\theta_{k} \$	

 R , \sqrt{h} **Pr.** First, lats see why this works.

For an "item" (ake, pdynomial) f, let F_f dande the frequency of f.

CASE2. Suppose $F_f \geq \varepsilon m$, so x san ε -heavy-hitter.

Then $f(x_j) \in S_j$ for all $j = 1,...,n$, so the list-recove 7
Pr. First, let's see why
The an "litem" (aka, this works . For an "item" (aka, polynomial) f, let f, denote the frequency of f. c nse1. Suppose $F_f \geq \varepsilon m$, so x is an ε -heavy-hitter. Then $f(x_j) \in S_j$ for all $j=1,...,n$, so the list-recovery algorithm / $WILL$ return f . $case$ 2. Suppose F_f < ε m, so f is NOT a heavy hitter. here are $\leq V \epsilon$ Actual heavy hitters, $g_1,...,g_{v_{\epsilon}}$. • f agrees with each of those in f $\leq k$ places \bullet Since $n > k/\varepsilon$, there is at least one j $s.t.$ $f(\alpha_j) = g_i(\alpha_j) \forall i=1,...,v_{\mathcal{E}}$ • That means that there is some s , s , t . $A_j \Gamma f(x_j)$ receives no contributions from any of the heavy hitters Datis see why this works.

"Tiem" (aka, pdgnomial) f, let F dansk Hurbrequency of f.

"Tiem" (aka, pdgnomial) f, let F dansk Hurbrequency of f.

Sose F_i = sm, so x san z heavy hitler.

Sose Fi = sm, so x san z heavy hitl **In the contract of the contract** • Thus, $A_i \Gamma f(\alpha_i)$ $1 \le \varepsilon m$, so $f(\alpha_i) \notin S_i$
• Then the list recovery algorithm will NOT return f . Now let's establish the parameters.

UPDATE TIME: Need to compute $f(u_j) V_j$, $\widetilde{O}(n) = \widetilde{O}(\log(n)/\epsilon)$.

OUEPY TIME: (To find c00 Presur, hitters): Run Gunswami-Sidan poly(n) = poly(lig(n)) $\begin{array}{rcl} \text{rate} & q^k & = N, & k \rtimes \text{en}, \text{so} \\ & & n = O(\log(N)/\epsilon). \end{array}$ $n=\overline{O(\log(N)/\varepsilon})$. UPDATE TIME: Need to compute $f(u_j)$ $\forall j$, $\tilde{O}(n)$ = $\tilde{O}(\sqrt{log(n)} / \varepsilon)$ QUERY TIME: (To find all freary hitters): Run Gunuswami-Sudan, pdy(n) = pdy($\frac{log(N)}{\epsilon}$) SPACE: q tables w/ q buckets each, so $O(q^2 log(m)) = O\left(\frac{log^2(N) log(m)}{\epsilon^2}\right)$ **Pr.** First, Sets see who ethis vents.

For our "Heat" (despitational) F, 2xi Ey dende the frequency of 3.

Conset. Suppose Ey is en , so x is an is heavy bifter.

Then $R(a) \ge S_1$ for all ju t_1, t_2, t_3 is the likelihoo

what we'll see roady
lisn't the best known, but
lit's competitive and
very cute!

CAUTION: we will need to tweak this slightly. Here's the idea.

Let
$$
C = RS_q(n, k)
$$
 $\omega / k = \frac{\epsilon n}{2}$, so it is
\n $(1, \frac{1}{\epsilon}, L) - list-recoveredb!$ with $L = poly(n)$. Again choose $q \approx n$.
\nAgain let $U = \frac{5}{2} \int \epsilon \mathbb{F}_q[X] : deg(f) < k$

DATA STRUCTURE:

Maintain n different COUNT-MIN-SKETCH data structures, $CMS₁$, $CMS₂$, MS_n , which have a universe. $\alpha' = \mathbb{F}_q$, and the same parameter ε .

Each has:

\n
$$
\text{WPDF} : O(\log(q))
$$
\n
$$
\text{QUERT} : O(q)
$$
\n
$$
\text{SPACE} : O\left(\frac{\log(q)}{\epsilon} + \log(m)\right)
$$

· So the SPACE for my data structure is $O(\frac{q\log(q)}{\epsilon} + O(q\log(m)))$ $=$ ($log(N)/_{\mathcal{E}^2}$)

UPDATE STEP:

When
$$
f \in \mathcal{U}
$$
 appears:
for $i = 1, ..., n$:
L CMS; .UPDATE $f(\kappa_i)$

· So the UPDATE TIME is $O(n (T(\text{poly evaluation}) + T(\text{cms update})))$ $=$ \overleftrightarrow{O} $\left(\log(N)/\epsilon\right)$

and the contract of the contract of

Let
$$
S_{i} =
$$
 QUERY (CMS_i) We symbols P that frequency
occured as $f(x_{i})$
Run Gaussian - Sudan on the S: $'s$. Which all the f is that might have

and return the output.
and return the output. Usen responsible for those B's.

Notice that $\ |S_j| \leq 2/\varepsilon$, since that's the guarantee of CMS. $\frac{d\mathbf{k}}{dt} = \frac{\mathcal{E}}{2}$, Gunuswami-Sudan applies. Notice the Since of the Motice the Since of the Motice of the Motice

QUERT
$$
TIME: \qquad O(n \cdot q) + poly(n) = poly(\frac{log(N)}{e})
$$

And finally, why does this work? CAUTION: ITDOESN'T QUITE WORKYET. Here's the picture :

in the output list! OOPS! So that doesn't quite work. Fix on next page...

The fix is to keep one more CMS, this one for the universe u :

Now, this has output list size $\leq 2/\varepsilon$, because CMS will only say " $\geq \varepsilon m''$ for at most $2/\epsilon$ of the f. 's.

HOORAY! That's what we wanted, AND it's really fust!

Chrestion: How can you (with the help of the routers), identify the bad guys, and block their packets in the future?

Here's ^a cute (but grossly over-simplified) version based on RS codes.

Say there are $n < q$ routers, and each router is addressed by some $\alpha \in \mathbb{H}_q$. tor example, let's take q = 2 3 , so that every nouter has a 32-bit address).

NAIVE SCHEME : Every time ^a router handles ^a packet, it appends it's address.

This works : But the downside is that the I'm getting a lot of traffic
From the path («1,«s,«1,.«s, %)packets get REALLY big, 32 exhabits I'm not going to accept any more for each router they stop at. packets with that path !

Instead :

④

*How does ^a router know it is first ? It doesn't. One way to get around this is to randomize - a router just quesses that it is first with some small probability. This can be mode to work.

 $(\alpha,\mathfrak{f},\omega)$ $(\alpha,q(\alpha))$ $(\ominus,\mathfrak{h}(\ominus))_{(\gamma,\mathfrak{f}_{3}(\gamma))}$ ← In this example, the paths $(\psi, g(\psi))$ (p, f_z(p)) (s, h(s)) (γ , $g(\gamma)$) (Θ , $g(\Theta)$)
(B, $g(p)$) (B, h(p)) (γ , h(γ)) (s, h(s)) (ϕ , $g(\phi)$) have a malicious user corresponding to g and h $(\circledcirc, \frac{\mu}{4}(\circledcirc))$ $(\frac{\varsigma}{3}, \frac{\mu}{12})$ $(\frac{\varsigma}{3}, \frac{\varsigma}{12})$ $(\frac{\varsigma}{3}, \frac{\varsigma}{12})$ somewhere upstream . $(a, k(a)) (e, q(e)) (g, k(y)) (g, q(g))$

 1 hat is, you are given a bunch of points (α_i, γ_i) so that the "BAD" correspond to polynomials that pass through many of these points and you want to find these bad polynomials.

That's what the Gunuswami-Sudan algorithm does!

(a, f.k) | (e, g(e) (e, h(e))(γ , f.s(g)) $\left(\psi,\mathfrak{g}(\psi)\right)\left(\mathfrak{p},\mathfrak{f}_{z}(\mathfrak{p})\right)\left(\mathfrak{z},\mathfrak{k}(s)\right)\left(\gamma,\mathfrak{q}(\mathfrak{q})\right)\;\left(\mathcal{O},\mathfrak{q}(\mathcal{O})\right)$ 11101 : S What $|w|$ Consider Sydon Sydon Min closs.

(x, ka) $(x, q\omega)$ (x, a) (x, ka) (x, a)

(x, a) ($\mathsf{K}\mathsf{x}$ (s, f,(s)) (s, q(s)) drawn $(a, b(a))$ $(e, q(e))$ $(s, b(y))$ $(s, q(y))$ differently + Guruswami -Sudan \S g(X), k(X), $\int_{\mathbb{R}} (x) \$ Pawn
Pawn
Priferently
Pring to allow any path
oring to allow any path I'm not going to allow any path that ended up going through o.io#::iim:ii:ii::::eihn7

That's it !

QUESTION TO PONDER

What can list recovery do for you ? ? ?