$CS250/EE387 - LecnRE 15 - LocALITY AND L1875$

Suppose we want to learn G from samples.

If the Fourier spectrum of G is "spiky," it suffices to estimate y_ω is $\hat{G}(\omega)$ for all ω so that $|\hat{G}(\omega)|$ > τ . Indeed, then we'd have

$$
G(x) = \sum_{\omega: \; \text{left}(x) \geq T} \hat{G}(\omega) (-1)^{\langle x, \omega \rangle} = \sum_{\omega: \; \text{left}(x) \geq T} y_{\omega} \cdot (-1)^{\langle x, \omega \rangle}
$$

 $\hat{G}(\omega)$ from samples. Tums out, we can estimate any particular

$$
\widehat{G}(\omega) := \frac{1}{2^{n_0}} \sum_{x} G(x) (-1)^{x, \omega x}, \quad \text{so choose a bunch of } x's \text{ at random, and estimate the sum.}
$$

But we can't do this forall 2^m coeffs $\hat{G}(\omega)$, or else that tukes $\Omega(2^n)$ samples - kinda dumb. Instead we'll just do it for the big ones... but we need to know which those are.

GOAL. Given quen access to
$$
G(x)
$$
 and a parameter $\tau >0$, find α set S of size poly(m) so that \forall w ω $\langle \hat{G}(\omega) | 3\tau, \omega \in S$.

Now,
\n
$$
\frac{\hat{G}(\omega) \ge \tau}{\frac{1}{2^n} \sum_{x \in \overline{F}_e} G(x) \cdot (-1)^{x, \omega}} \cdot e^{\frac{x}{1} + 1} \text{simplicity. By repeating whether we have}
$$
\n
$$
\Rightarrow \frac{1}{2^n} \sum_{x \in \overline{F}_e} G(x) \cdot (-1)^{x, \omega} \ge \tau
$$
\n
$$
\Rightarrow \frac{1}{2^n} \left(\left[\frac{x \cdot G(x) - (-1)^{x, \omega} \cdot 3 \cdot (-1)^{x, \omega}}{1 - 1} \right] - \left[\frac{x \cdot G(x) + (-1)^{x, \omega}}{1 - 1} \right] \right) \ge \tau
$$
\n
$$
\Rightarrow \frac{1}{2^n} \left[\left\{ \frac{x \cdot G(x) - (-1)^{x, \omega}}{1 - 1} \right\} \right] \ge \frac{1}{2} + \frac{\tau}{2}
$$
\n
$$
\Rightarrow \frac{1}{2^n} \left[\left\{ \frac{x \cdot G(x) - (-1)^{x, \omega}}{1 - 1} \right\} \right] \ge \frac{1}{2} + \frac{\tau}{2}
$$
\n
$$
\Rightarrow \frac{1}{2^n} \left[\left\{ \frac{x \cdot g(x) - \langle x, \omega \rangle}{1 - 1} \right\} \right] \ge \frac{1}{2} + \frac{\tau}{2}
$$
\n
$$
\Rightarrow \frac{1}{2^n} \left[\left\{ \frac{x \cdot g(x) - \langle x, \omega \rangle}{1 - 1} \right\} \right] \ge \frac{1}{2} + \frac{\tau}{2}
$$
\n
$$
\Rightarrow \delta \left(g, \lambda_{\omega} \right) \le \frac{1}{2} - \frac{\tau}{2} \text{, where } \lambda_{\omega}(x) = \langle x, \omega \rangle \text{ and } (\lambda_{\omega}(x), \lambda_{\omega}(x), \dots, \lambda_{\omega}(x_{\omega}))
$$
\n
$$
\text{is a Hademard codeword}!
$$

New GionL. Given every access to a received word
$$
q: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}
$$
, find all the
\nHadernard codewords ($(\infty, x, \times, ..., x_{\alpha}, x_{\alpha}, \times)$) = ($x_{\alpha}(x_{1}), ..., x_{\alpha}(x_{\alpha})$)
\nso that $S(q, k_1) \leq \frac{1}{2} - \varepsilon$.
\nThat is, need like to LIST DECODE the Hadarard Code... in SUBIMENT. THE:
\n**NOTE**: \mathbb{F}_{2} **Dist** (Hadernad Code)² = $\frac{1}{2}$, so we can only uniquely decade up to radius 1/4.
\n**NOTE**: $\mathbb{F}_{2}(x) = \frac{1}{2}(1 - \sqrt{1 - 2\cdot \frac{1}{2}}) = \frac{1}{2}$, so we can only uniquely decade up to radius 1/4.
\nBut we could have to list $\frac{1}{\sqrt{2}}(x) = \frac{1}{2}(1 - \sqrt{1 - 2\cdot \frac{1}{2}}) = \frac{1}{2}$, so we know that $\frac{1}{2}(x)$ is $\frac{1}{\sqrt{2}}(x) = \frac{1}{2}(1 - \sqrt{1 - 2\cdot \frac{1}{2}}) = \frac{1}{2}$, so we know that $\frac{1}{2}(x)$ is $\frac{1}{\sqrt{2}}(x) = \frac{1}{2}(1 - \sqrt{1 - 2\cdot \frac{1}{2}}) = \frac{1}{2}$, so we know that $\frac{1}{2}(x) = \frac{1}{2}(1 - \sqrt{1 - 2\cdot \frac{1}{2}}) = \frac{1}{2}$, so we know that $\frac{1}{2}(x) = \frac{1}{2}(1 - \sqrt{1 - 2\cdot \frac{1}{2}}) = \frac{1}{2}$, so we know that $\frac{1}{2}(x) = \frac{1}{2}(1 - \sqrt{1 - 2\cdot \frac{1}{2}}) = \frac{1}{2}$, so we know that $\frac{1}{2}(1 + \frac{1}{2}) = \frac{1}{2}$, so we know that $\frac{1}{2}(1 + \frac$

We saw something likethis last time.

Why does this work ? As we've seen before :

$$
\mathbb{P}\left\{\n\begin{array}{l}\n\text{incopect } \mathcal{F} \\
\text{incopect }\mathcal{F}\n\end{array}\n\right\} = \mathbb{P}\left\{\n\begin{array}{l}\n\text{either } g(e_i + \beta) \text{ or } g(\beta) \text{ were in error}\n\end{array}\n\right\}
$$
\n
$$
= \frac{1}{2} - 2\epsilon
$$

Why does this work? As we've seen before:

\n
$$
\mathbb{P}\left\{\begin{array}{l}\n\overline{\omega_{i}}(p) \text{ is incorrect } 3 \leq \mathbb{P}\left\{\text{either } g(e_{i}+p) \text{ or } g(p) \text{ were in error}\right\} \\
&\leq (\frac{1}{q}-\epsilon) + (\frac{1}{q}-\epsilon) \\
&= \frac{1}{2} - 2\epsilon.\n\end{array}\right.
$$
\n
$$
\mathbb{P}\left\{\begin{array}{l}\n\text{More than } \frac{1}{2} \text{ of the } \overline{\omega_{i}}(p) \text{ are incorrect } 3 \\
&= \mathbb{P}\left\{\begin{array}{l}\n\frac{1}{12} - \sum_{k=1}^{n} \left(\mathbf{1}\left\{\begin{array}{l}\overline{\omega_{i}}(p) \text{ is correct } 3 - \frac{1}{2} - 2z\right)\right\} > 2\epsilon\n\end{array}\right\} \\
&\leq \frac{\frac{1}{12} \sum_{k=1}^{n} \mathbb{E}\left\{\mathbf{1}\left\{\begin{array}{l}\overline{\omega_{i}}(p) \text{ is correct } 3 - \frac{1}{2} - 2z\right\}\right\}^{2} \qquad \text{by Chebyshev} \\
&\leq \frac{\frac{1}{12} \sum_{k=1}^{n} \mathbb{E}\left\{\mathbf{1}\left\{\begin{array}{l}\overline{\omega_{i}}(p) \text{ is correct } 3 - \frac{1}{2} - 2z\right\}\right\}^{2} \qquad \text{by Chebyshev} \\
&\leq \frac{1}{11} \cdot \epsilon e^{2}.\n\end{array}\n\end{array}\right.
$$
\n
$$
\leq \frac{1}{11} \cdot \epsilon e^{2}.\n\leq \frac{1}{11} \cdot \epsilon e^{2}.\n\leq \frac{1}{11} \cdot \epsilon e^{2}.
$$

Now union bound overall i and win.

 OK , but now we want to do it up to $\frac{1}{2}$ ε , not $\frac{1}{4}$ ϵ .

Suppose we had access to a magic genie who will just tell us the correct value $\{\omega, \beta_j > j\}$ But we can only askthe genie for Tvalues.

 $\frac{1}{AC}$ $\mathsf{ALG}|_1$

1

1K, but now we want to do it up to
$$
\frac{1}{2} - \varepsilon
$$
, not $\frac{1}{4} - \varepsilon$.
\n14. $\frac{1}{4}$ We can only ask the Gonic's to a magic generic who will just tell us the correct value $\angle \omega$, β_1 is
\n15. $\frac{1}{4}$...
\n16. $\frac{1}{4}$...
\n17. $\frac{1}{4}$...
\n18. $\frac{1}{4}$...
\n19. $\frac{1}{4}$...
\n10. $\frac{1}{4}$...
\n11. $\frac{1}{4}$...
\n10. $\frac{1}{4}$...
\n11. $\frac{1}{4}$...
\n12. $\frac{1}{4}$...
\n13. $\frac{1}{4}$...
\n14. $\frac{1}{4}$...
\n15. $\frac{1}{4}$...
\n16. $\frac{1}{4}$...
\n17. $\frac{1}{4}$...
\n18. $\frac{1}{4}$...
\n19. $\frac{1}{4}$...
\n10. $\frac{1}{4}$...
\n11. $\frac{1}{4}$...
\n12. $\frac{1}{4}$...
\n13. $\frac{1}{4}$...
\n14. $\frac{1}{4}$...
\n15. $\frac{1}{4}$...
\n16. $\frac{1}{4}$...
\n17. $\frac{1}{4}$...
\n18. $\frac{1}{4}$...
\n19. $\frac{1}{4}$...
\n10. $\frac{1}{4}$...
\n11. $\frac{1}{4}$...
\n12. $\frac{1}{4}$...
\n13. $\frac{1}{4}$...
\n14. $\frac{1}{4}$...
\n15. $\frac{1}{4}$...
\n16. $\frac{1}{4}$...
\n17. $\frac{1}{4}$

Now, the same argument works :

$$
\mathbb{P}\left\{\n\begin{array}{l}\n\widetilde{w_i} \ (\beta_t)\n\end{array}\n\right\} = \mathbb{P}\left\{ \begin{array}{l}\n\operatorname{g}(e_i + \beta_t)\n\end{array}\n\right\}
$$
\n
$$
= \mathbb{P}\left\{ \begin{array}{l}\n\operatorname{g}(e_i + \beta_t)\n\end{array}\n\right\}
$$
\n
$$
= \mathbb{P}\left\{ \begin{array}{l}\n\operatorname{g}(e_i + \beta_t)\n\end{array}\n\right\}
$$
\n
$$
\leq \frac{1}{2} - \varepsilon,
$$
\n(because $\operatorname{genies} \text{ don't lie})$.

so everything goes through as before.

The problem : WE DON 'T HAVE A GENIE .

- ALAI Input: quay access to g. HIM [→] HI , a parameter ^e. Output: A list of we Fzm sit . ^S (^g, lw If I - E , w/ prob ⁹⁴¹⁰⁰. ÷i÷÷::÷÷÷: . ^I Run ALGI . usingthis genie to obtain ^w Add w HS . - RETURN S Why is this ^a good idea?

$$
\cdot
$$
 If $S(l_{\omega}, g) \leq \frac{1}{2} - \epsilon$, then $Tb_{1}, b_{1} \leq (\omega, p, 2, ..., \omega, pr)$
so that AIG1 returns ω . Thus ω ends up in the list S.

Why isthis ^a bad idea? \cdot $|S| = |Z^{\dagger}| = |Z^{\dagger}|^{\mathfrak{m}} \geq |\mathfrak{m}|^{\mathfrak{m}}$ $-$ But $\mathbb{S} \subseteq \mathbb{F}_2^m$ was supposed to be a small subset.

To fix this, we will use a PSEUDORANDON gene.
To see what this means, consider the following way of picking the p's.
\n- Choose
$$
P_1, P_2
$$
 randomly in F_2^m Card (let 1 = log(T))
\n- For A \le Eq. 3, define $P_A := \sum_{i \in A} P_i$
\n- Now I have $2^0 = T$ different values of P.
\n- CLAM. $\{P_A : A \leq E \cup \} \text{ are PMRNISE INDEPENDENT.}$
\n 2^{Re} . For any A+A', Pa and Pr' are independent.
\n- Proof.
\n $P_A = P_A + \sum_{i \in A \land A'} P_i =$ something uniformly random and indap.
\n $\sum_{i \in A \land A'} P_i$

- Notice that our correctness argument before never used the fact that
the B: were fully independent: (for Chebysher we only needed pairwise independence.
- · So ALG1. works just fine with these B's!

 $\frac{1}{1}$ ALG 3.

1

|

 $Input:$ query access to $q:$ $\Vdash_\mathbb{Z}$ in $\Vdash_\mathbb{Z}$, a parameter $\varepsilon,$ and a magic genie. Output: An weff s.t. $S(g, l_{\omega}) \leq \frac{1}{2} - \epsilon$, ω prob 99/100.

/

/

LG 3.
Input: query access by $q: \mathbb{F}_2^m \rightarrow \mathbb{F}_2$, a parameter ε , and a magic genie
Output: An $\omega \in \mathbb{F}_2^m$ s.t. $S(g, l_{\omega}) \in \frac{1}{2} - \varepsilon$, ω prob 99/100.
Draw $P_{1,3}$ —, $3\beta\epsilon$ uniformly at random, $\leftarrow \ell = \log(m/\varepsilon^2) + O(1)$
Ask the genie for b, ..., b _k so that b _i = $\langle \omega, p_i \rangle$.
For $A \subseteq \lceil \epsilon \rceil$, let $p_A \subseteq \sum_{\epsilon \in A} p_{\epsilon}$, let $b_A = \sum_{\epsilon \in A} b_{\epsilon}$.
For each $i=1,...,m$:
For $A \subseteq \lceil \epsilon \rceil$:

For $A \subseteq \Gamma$ e], let $B_A = \Sigma_{\text{teA}} B_{t}$, let $b_A = \Sigma_{\text{teA}} b_t$.

ALG 3.	\n \mathbf{ALG} \n
And:	\n $\mathbf{a} \cdot \mathbf{a}$ \n
Output:	\n $\mathbf{a} \cdot \mathbf{a}$ \n
Output:	\n $\mathbf{a} \cdot \mathbf{a}$ \n
Output:	\n $\mathbf{a} \cdot \mathbf{a}$ \n
Output:	\n $\mathbf{a} \cdot \mathbf{a}$ \n
Output:	\n $\mathbf{a} \cdot \mathbf{b}$ \n
Output:	\n $\mathbf{a} \cdot \mathbf{b}$ \n
Output:	\n $\mathbf{a} \cdot \mathbf{b}$ \n
Output:	\n $\mathbf{a} \cdot \mathbf{b}$ \n
Example 1	\n $\mathbf{a} \cdot \mathbf{b}$ \n
Example 1	\n $\mathbf{a} \cdot \mathbf{b}$ \n
Example 1	\n $\mathbf{a} \cdot \mathbf{b}$ \n
Example 1	\n $\mathbf{a} \cdot \mathbf{b}$ \n
Example 1	\n $\mathbf{a} \cdot \mathbf{b}$ \n
Example 1	\n $\mathbf{a} \cdot \mathbf{b}$ \n
Example 1	\n $\mathbf{a} \cdot \mathbf{b}$ \n
Example 1	\n $$

 K ETURN $\omega = (\omega_{1}, \omega_{2}, ...)$, $\omega_{\mathbf{m}}$) $\hphantom{\omega_{\mathbf{m}}}$) $\hphantom{\omega_{\mathbf{m}}}$ This dy makes T-m quenes.

Noticethat if the genie is correct about ^b., be, then $\langle \omega, \rho_A \rangle = \sum_{t \in A} \langle \omega, \rho_t \rangle = \sum_{t \in A} b_t = b_{A,t}$ so the genie is correct about b_A \forall $A \in \lceil l \rceil$.

.

This alg. is correct for exactly the same reason as before, since the BA are pairwise independent.

ALG 4 (GODREICH-LEVIN))	
Input: $quay access by a: F_{\epsilon}^{m} \rightarrow F_{\epsilon}, a parameter \epsilon,$	
Output: A list of e over F_{ϵ}^{m} s.t. $S(g, l_{\epsilon}) \leq \frac{1}{2} \cdot \epsilon$, ω path whose	
Output: A list of e over F_{ϵ}^{m} s.t. $S(g, l_{\epsilon}) \leq \frac{1}{2} \cdot \epsilon$, ω path whose	
Unitialize $S \leftarrow \phi$	set $I = \log (m/e^{-}) + O(1)$
For each $(b_1, ..., b_A) \in F_{\epsilon}$:	
then ALG 3 using this genie to obtain ω	
Add ω b S.	
REURIN S	
WE have basically already power:	
THE: $S \leftarrow F_{\epsilon}^{m}$ of size at most poly(m ϵ) systems to q and	
REININ S	With S ($S_{\epsilon} = F_{\epsilon}$) of size at most poly(m ϵ) so that, $\frac{1}{2} \forall \omega \in F_{\epsilon}$ with S (S_{ω} , q) $\leq \frac{1}{2} \cdot \epsilon$, P [$\omega \cdot S$] $\equiv \exists \forall i \mid n \infty$.
Substack	CA: $(KusHLEVITZ - MANSOUR)$
IF: $G: F_{\epsilon}^{m} \rightarrow \frac{1}{2} \pm i$ is a Boolean function, then we can estimate\n $\frac{1}{G}(s) \approx \sum_{\omega \in R_{\epsilon} \cup \{\omega\}} \frac{1}{\omega(s)} \cdot \frac{1}{\omega(s)} \cdot \frac{1}{\omega$	

THM. The Goldreich Levin algorithm makes poly(m/e) queries to a and
returns a list S = IF," of size at most poly(m/e) so that, $\forall w \in \mathbb{F}_n$ " g and T_{HM} . returns a list S siff," \circ of size at most \lnot poly(m/e) so that, \forall we ff," with δ (ℓ_{ω} , g) $\leq \frac{1}{2}$ -

Informal COR.

/

(Kushilevitz- Mansour) (Kush
Tf G

:
: [then we can estimate.
then we can estimate.

/

$$
\begin{aligned}\n\mathbb{H}_{2} \xrightarrow{m} &\geq \frac{1}{2} \mathbb{1} \text{ is a Boolean function,} \\
\widetilde{G}(x) &\approx \sum_{\omega: |\widehat{G}(\omega)| \leq \epsilon} \widehat{G}(\omega) \cdot (-1)^{\leq x, \omega} \n\end{aligned}
$$

using poly $(\frac{m}{\tau})$ queries, whp.

3) LOCAL LIST DECODING.

What we just saw was a LUCAL LIST DECODING ALGURITTIM.

DEF.
$$
C \subseteq \sum_{i=1}^{n} (Q, \rho, L) - LCAILY LIST DECODE if:
$$

There is a randomized algorithm \mathcal{H} that outputs at most \Box other algs \mathcal{B}_b , \mathcal{B}_L So that :

 \cdot \forall ie [L], δ takes an input je [n], wes at most Q queries to $\gamma \in \mathcal{Z}^n$.

$$
\forall g \in \sum_{i=1}^{n} g
$$

$$
\forall c \in C \text{ with } \delta(s_{i}) \leq \ell, \exists i \text{ s.t. } \forall j \in [n]:
$$

$$
\text{or } \{\beta_{i}(\int_{0}^{1} g \cos h g) = c_{j}\} \geq \frac{2}{3}
$$

Think of each 'Bi as a different genie.
In the previous example, the 'B's were indexed by (b,,b,,..,b) etf₂:

GENE
$$
B_{(b_1, b_2, ..., b_k)}
$$
 (away access to q, eval pt α):
\n $l \leftarrow \log(l' \in Z) + O(1)$
\n

The reason we bother to give LOCAL LIST DECODING a name is because it has many applications. We've already seen one in learning theory, and here's another: ④ PRG, from ONE - (This is what Goldreich ⁺ Levin were interested in). WARNING: This will be extra handwavey \mathbf{u} The resson we before to give LOCAL LIST DECODING a nome is because it has mong
applications. We've already seen one in learning theory, and here's another:
RGs Som OWE (This is what Gidlerich Learn were inhested in).

F." . " DEF. " A ONE-WAY FUNCTION easy to apply by hard toinvert. Can you evaluate \overline{p} $\overline{p$, L Re reason we bother to give LOCAL LIST DECODING is in
pplicehiors. We've already seen one in learning of
Gs Fun OWFs (This is what
City in the exist a handware).
This is what
Contained and relation
Contained and relation o Can you find
an x so that
 $f(x)=\beta$? Inhuitively, a OWF gives
a problem that's har a problem that's hard • We don't know if OWFs exist. In fact, \exists OWF \Rightarrow P \neq NP. to solve I at easy to check , and that's what $P_{\pm}NP$ means. • But there are several candidates: factoring, discrete log, etc. . And if a OWF exists, we can do some cool things with it. A PRG has output that is not very renclom, but is computationally difficult to distinguish from unifor

shortsed > PRG -> loosong pseudoranclom sequence random, but is computationally difficult to distinguish from uniform. $\frac{1}{2}$ $\frac{1}{2}$ "DEF" PSEUDORANDUM GENERATOR. DOM GENERATOR.

nas output that is not very rendom, but is compute hisrally difficult!

short seed > PRG > loosong pseudorandom sequence

(strict)

(condom?)

We might try to make a PRG from a ONF as fillows: • Say f is a CWF, $f: \mathbb{F}_a^k \to \mathbb{F}_a^k$ erechnically, f should be a one-way permutation. • Suppose that this also means that it's hard to quess $u_\texttt{1}$ given $f(\texttt{x})$. (*) Con you find be $\{q_1\}$ s.t.
 $Q \rightarrow \frac{q}{2}$ x $w/ x_1 = b$ and
 $Q(x) = \beta$? . Now consider the PRG : $\begin{CD} \times \longrightarrow \boxed{\text{RS}} \longrightarrow \boxed{\text{RQ}} \longrightarrow \boxed{\text{X}_1 \quad [\text{fix}]_1 \quad [\text{f}(\text{fix})]_1 \quad [\text{f}(\text{fix})]_1 \quad \dots \end{CD}$ Random seed $\frac{1}{\sqrt{\frac{1}{\tan(\frac{1}{2}m)}}}$ $\frac{1}{\tan(\frac{1}{2}m)}$ $\frac{1}{\tan(\frac{1}{2}m))}$ $\frac{1}{\tan(\frac{1}{2}m))}$ $\frac{1}{\tan(\frac{1}{2}m))}$ \cdot lums out this is a goodPRG, assuming $f(x)$. "DEF" A HARDCORE PREDICATE b(x) for $f(x)$ is a function b: $H_z^k \rightarrow H_z$ so that
it's hard to guess b(x) given $f(x)$. DEF " it's hard to guess $b(x)$ given $f(x)$. $\begin{array}{cc}\n\alpha \text{ DEF} & A & \text{HAR} \\
\downarrow i t's & \text{har} \\
\hline\n\end{array}$ So in order to get PRGs from OWFs, we want a herdcore predicate for our OWF f. i is a OWF, $f: \mathbb{F}_{q}^{1} \rightarrow \mathbb{F}_{q}^{1}$ \rightarrow Technically, Potential is a contentries vertex respectively.

Effect that this decrease that it's head to gives x_1 given $f(x)$. (v)
 $\bigodot \left\{\begin{array}{l}\frac{\text{Supp}(y_1)}{2} & \text{Supp}(y_1$

In fact, we get this from the local list-dacotability of the Hedamed cycle.
\n"CLAIN". Let
$$
f : [F_z^m \rightarrow F_z^m]
$$
 be a one-wor permutation.
\nThen it's hard to guess (α, x) given $f(x)$ and α .
\n\na ka, for all $\alpha \in F_z^m$, $\langle \alpha, x \rangle$ is a hardore produce for $\tilde{f}: (x, \alpha) \mapsto (f\omega, \alpha)$.
\n\nA ρf ." Suppose there were some $\alpha \beta_3$ Q so that
\n ρf ." Suppose there were some $\alpha \beta_3$ Q so that
\n ρf or $\tilde{f}: (\alpha, f\alpha) = \langle \alpha, x \rangle$ and $\tilde{f} \geq \frac{1}{2} + \epsilon$.
\nThen I can get away access to $g(\alpha) := Q(\alpha, f(\alpha))$, which is a very noisy version
\nof α Hadamard codeword.
\nNow I can use my local list-docoding algorithm to obtain a list \mathcal{L} of $O'(\epsilon^2)$
\npossible x's.
\nThen I compute $\tilde{f}(x): x \in \mathcal{L}$, $\int_{\alpha} \alpha_3 x \leq L \cdot \rho(x) = \beta$, and return it.
\nSo $\int_{\alpha} \beta \cos(\alpha_3 x) \leq \alpha_3 \cos(\alpha_3 x) \leq \alpha_3 \cos(\alpha_3 x)$.

QUESTIONS to PONDER

1 Can you locally list decode RM_q(m,r) for r<q?
2 Can you leen Fourier-sparse fis from poly(m/_e) RANDOM quenies?
3 Can you think of other applications of local list *decoding*?