CS250/EE387-LECTURE 16-RScodes as Regeneating codes

J STORE on n different nodes

leach node also holds some other stuff, say encodings of other files in the system ... but let's just focus on one file. ")

/

It turns out that communication is EXPENSIVE (and is a bottleneck in distributed storage systems) so this is a win .

①What's the model here ?

LOCALITY seems useful. But are LCCs the right bol for the job?

ANSWER: Not really .

The right model is ERASURES, not ERRORS.

(b) 98% of the time^{*}, only ONE server is down. * Based on a stu

* Based on ^a study Warehouse cluster.

means

Instead what do we want ?

(1)Best trade-off between RATE and DISTANCE possible -aka an MDS code. • We want to handle as \cup and Distribute possible - also an MDS code.
Failures as possible in the worst case. Recall this

(2) Every symbol can be obtained from not-too-many other symbols. n-k+1 = d \cdot When there is only 1 failure, we'd like to repair it with minimal communication.

② RS CODES area BAD IDEA for DISTRIBUTED STORAGE .

 (1) MDS Code

(2) Every symbol can be obtained by not - too many other symbols

 (2) doesn't hold:

• Suppose $\mathcal{F} \in \mathbb{F}_{7}$ [x], $deg(\mathcal{f}) < k$. Suppuse fcff₇[x], deg(f)<k.
I <u>NEED</u> k evaluation pts f(x1),

• $\overline{\bot}$ NEED k evaluation pts $\{(\alpha_i),...,\beta(\alpha_k)\}$ to say ANYTHING atall about $\{(\alpha_{k+1})\}$ $\frac{1}{2}$
 $\frac{1}{4}$

eg, suppose f(X) is a quadratic and goes through these 2 points: what is $f(\alpha_s)$? COULD BE ANYTHING.

 d_q

•

/

•

So that's really wasteful.

So can we find some other code satisfying (1) and (2)?

NO! Actually that argument works for any MDS rode, not just RS codes. So:

If (1) MDS Code (2) Every symbol can be obtained by not-too many other symbols then

TWO WAYS around this: WAY 1: Give up on MDS.
WAY 2: Rephrase (2) This is really interesting and the buzzword
is "Locally Recoverable Code." We won't talk about it.

-We will talk about this.

We will instead shoot for:

(1) MDS Code (2) Every symbol can be obtained by not-too-many BITS from other symbols.

In pictures the model is this:

Such a code is called a REGENERATING CODE. There's $tons$ of super cool work on these that I won't talk about. But for today ...

"THM." Reed-Solomon Codes ARE good regnerating codes.

(3) RS CODES are a GREAT IDEA for distributed storage!

For simplicity let's focus on $k = n/2$, $n = q$, $q = 2^b$. So a rodeword of $RS_q(F_q, q, 9/2)$ looks like:

 $f(0)$ $f(\mathcal{A})$ $f(\mathcal{A})$ $\left\vert \mathfrak{l}(\mathbf{v})\right\vert$ for a primitive elt g.

Say f(O) fuils. < Suborts with any node,
Say f(O) fuils. < Substitution concreteness say

CLAIM (which we will show)

It is possible to download ONE BIT from $f(q^i)$ for $i=1,...,q-1$, and recover $f(0)$.

Notice this is $q - 1$ \overline{B} ITS total, while the naive scheme would download k = v_2 whole symbols, each are $l_q(q)$ bits $-$ so that's $q l_q(q)$.

So the CLAIM is BETTER than the naive sheme!

CLAIM (which we will not show)

This is optimal $*$

To prove the first CIAIM, we will need the following algebra. Bck:
\nFACT: If at is a vector space over
$$
F_2
$$
.
\nSo we can think of $\alpha \in F_2$: as a vector $\vec{\alpha} \in F_2^c$ if we want.
\n(c) course, this is for the additive structure only.)
\n
\nFACT: Let $P(X) = X + X^2 + X^4 + \dots + X^{d^2-1}$. Then
\n $(\alpha) P: F_{\vec{\alpha}t} \rightarrow F_2$ is $F_{\vec{\alpha}}$ -linear.
\n(a) P: $F_{\vec{\alpha}t} \rightarrow F_2$ is $F_{\vec{\alpha}}$ -linear.
\n(b) All $F_{\vec{\alpha}}$ -linear f is ψ : $F_{\vec{\alpha}t} \rightarrow F_2$ have f the form $\psi(x) = P(\gamma \cdot X)$ for some $\gamma \in F_2$.
\n(c) "Monsily" we should think of $P(\alpha \cdot \beta)$ as $\langle \vec{\alpha}, \vec{\beta} \rangle$ for $\vec{\alpha}, \vec{\beta} \in F_2^c$.
\n(C) "Monsily" we should think of $P(\alpha \cdot \beta)$ as $\langle \vec{\alpha}, \vec{\beta} \rangle$ for $\vec{\alpha}, \vec{\beta} \in F_2^c$.
\n ψ is usually called the "field have.")
\n ψ is a
\n*which, there always no
\nmass, then*
\n ψ is a
\n ψ

Now that we have first, we can prove for CLMM. Recall
$$
g \cdot g^*
$$
.
\nBy RS clearly, RS₁($\overline{F_1}, \overline{\zeta}, \frac{a}{\overline{\zeta}}, \frac{1}{\overline{\zeta}} = RS_{1}(\overline{F_1}, \overline{\zeta}, \frac{a}{\overline{\zeta}})$
\nSo for all f, $g \in \overline{F_1} [X]$ and degree $\langle k = \sqrt{a_1}$
\n
$$
Q = \sum_{\alpha \in \overline{F_1}} f(\alpha) \cdot g(\alpha)
$$
\n
$$
\frac{\partial^2 f(\alpha)}{\partial \alpha} = \sum_{\alpha \in \overline{F_0} \setminus \{0\}} f(\alpha) \cdot g(\alpha)
$$
\nFor any $g \in \overline{F_2}$, $g \circ f$ and $g \circ f$
\n
$$
\frac{\partial^2 f}{\partial \alpha} = \frac{1}{\alpha} \cdot \frac{1}{\
$$

So for all
$$
\vec{y} \in \mathbb{F}_{a}^{6}
$$
, we have
\n $\langle f(\vec{0}), \vec{y} \rangle = \sum_{\alpha \in \mathbb{F}_{q} \setminus O} P(\vec{y} \alpha) \langle f(\vec{\alpha}), \vec{\alpha} \rangle$
\nRecall the goal is to find $f(\alpha)$. So the algorithm is:
\n ΔLG . (Assuming $f(\alpha)$ has failed).
\n \cdot The node holding $f(\alpha)$ rebins $b_{\alpha} = \langle f(\vec{\alpha}), \vec{\alpha} \rangle \in \mathbb{F}_{a}$
\n \cdot We compute $\langle \vec{e}_{\alpha}, \vec{\beta} \vec{\alpha} \rangle \rangle = \sum_{\alpha \in \mathbb{F}_{q} \setminus O} P(\vec{p}_{\alpha} \cdot \alpha) \cdot b_{\alpha} \in \mathbb{F}_{a}$ for all α , where β is the limit of β .
\n \cdot Let $f(\alpha) = (\langle \vec{e}_{\alpha}, \vec{\beta} \vec{\omega} \rangle, \langle \vec{e}_{\alpha}, \vec{\beta} \vec{\omega} \rangle, ..., \langle \vec{e}_{\alpha}, \vec{\beta} \vec{\omega} \rangle)$

 $\sqrt{\mathsf{Mat}}$'s it ! This feels a bit magical, but achually it generalizes to some other parameter regimes and also turns out to be optimal!

[Guniswami, W. 16], [Dau, Milenkovic 17], [Tamo-Ye-Barg 17] for more. See

The point:

- For distributed storage, a different notion of locality is appropriate.
This is good news since even though RS codes are Not good LCCs. they ARE good regenerating codes!
- · Also, this is kind of a neet fact about polynomid interpolation.

④ COURSE RECAP.

This is the last lecture ... WHAT HAVE WE LEARNED?

WHAT HAVE WE LEARNED?

- tundamental trade-offs between KATE and DISTANCE
- IRSE RECAP.

Sisthe last lechare... WHAT HAVE WE LEARNED?

HAT HAVE WE LEARNED?

 Tundamental track-offs between RATE and DISTANCE

 The "correct" trade-off forbinary codes is still open, but over large alphabe

it is al - The " correct" trade-off forbinary codes is still open, but over large alphabets it is altained by ...
- REED -SOLOMON CODES and " LOW-DEGREE POLYS DON'T $-$ OMG the BEST code! $HAVE TOO MANY ROOTS$
- · How to decode RS codes, and how to use this to get efficiently deadable binary codes . · Reed-Muller, BCH, concatenation, oh $\dddot{\delta}$!
.
-

:4 URUSWAMI-SUDAN Algorithm: And we can modify this bo achieve capacity
by FOLDING.
. STEP 1: INTERPULATE. STEP 2: Root-FIND. STEP 3: PROFIT. · We can do list-decoding (also list-recovery) EFFICIENTLY w/ the :L COURSE RECAP:

This is the last lecture... WHAT HAVE WE LEARNED?

WHAT HAVE WE LEARNED?

WHAT HAVE WE LEARNED?

The times? task-of Griting code is 30 que, but see lengt dipide

The times? task-of Griting code is 30 que, bu

In the contract of the contract We talked about RM codes and locality! · Plus, local-list-decoding, and just now regenerating codes! !

> Along the way , APPLICATIONS ! • Crypto, compressed Sensing . Group testing , Heavy Hitters, Leaming theory. Sto*rage,* (communication, QR codes, hat puzzles,...)

THE MORALIs) of the STORY :

HE MORAL(s) of the STORY:

(1) Low-degree polynomials clon't have too many nots.

and this fact is unreasonably weful!

(2) Error correcting codes show up all over the place.

maybe even in Your own research! (1) Low-degree polynomials don't have too many roots.

(2) Error correcting codes show up all over the place.
maybe even in Your own research!

QUESTION TO PONDER

What can error correcting codes do for you? .
.
.