CS 250/EE 387 - LECTURE 3 - MORE LINEAR CODES

 S APPLICATIONS to CRYPTO § ASYMPTOTIC^S !

1) The GILBERT VARSHAMOV BOUND

So far, we have seen the HAMMING BOUND, which is an upperbound on the rate of a code. (aka, an IMPOSSIBILITY RESULT). We can match it for $n = 7$, $k = 4$, but what about in general?

Next , we'll seethe GILBERT-VARSHAMOV BOUND, which is aPOSSIBILITY RESULT.

THM (GILBERT-VARSHAMOV)

OPEN

 et:&. Eggman .:¥naII¥g!iii.III.Insists: ftp.l-iosdvndddtnII.ii#aIEsEeIend NOTE : You canremove the / #

comparethis to the Hammingbound , which

$$
R \leq 1 - \frac{\log_{\theta}(\text{Vol}_{\theta}\left(\left[\frac{d-1}{2}\right], n\right))}{n}
$$

We will talk more about the relationship between these two later , but for now just notice that $R_{GV} < R_{HAMMING}$, so math is not broken!

We'll prove the GV bound now - it's pretty easy! However, it's NOT KNOWN if we can do better in general!

QUESTION Do there exist binary codes that do better
than the GV bound? (for all pagameter regimes?)

- - This is called the METHOD. Proof of the GV bound . PROBABILISTIC :::c:::¥d:iii.in:c. : t.ir:¥÷. " iii.pier:*" i.in of dimension ^k Fk / Let C be ^a random subspace of Ff, Let ^G be ^a random generator matrix for C. USEFULF.net#ForanyfixedxtO,G'XisunifomlyrandominFqlE Informal proof: Because ofall the symmetry, |frmalproof:Funexerci# how could it be ? other way any disHel xmeifgiysozwt (^G ending,ogwtk) - Now, ×) I :÷÷÷÷÷÷÷÷÷i÷÷÷÷:÷ nq ÷÷÷:÷÷÷:÷÷÷÷÷÷÷÷÷÷f Pl ^F I xetfgk : wtfG. x) ed } ^E qk . n) . Volgld-, we win as long as this is E ¹ . we win if Thus, Taking logs of both sides, t (Volgfthn)) k s 0 n log ^g I So choose k ⁼ n)) (Volgold - n and weare done. BBBlog g , I ,

E FFICIENCY $($? $)$

- EFFICIENCY (?)
• If C is linear, we have an efficient encoding map $\chi \mapsto G \cdot \chi$ The computational cost is one matrix-vector multiply
- If C is linear with distance d , we can DETECT sol-1 errors efficiently: If $0 \leq w t(e) \leq d-1$ and ceC , then $H(c+e) = H \cdot e + O$, so just check if $H\ddot{c} \neq 0$
- If C is linear with distance d, we can CORRECT $\leq d$ -I ERASURES efficiently: We have -

say these are

still OK

 $\mathsf{Id}\text{-}\mathbf{1}$) rows are

 \Rightarrow Solve this linear system $G'x = c'$ for x.

- If $|C|$ is linear with distance d , can we ASIDE : Can we still solve linear t
Aside
T CORRECT $\lfloor \frac{d-1}{2} \rfloor$ ERRORS efficiently?
	- . It worked for the (7,4,3)_a-Hadamard code!
But what about in general?
- systems efficiently over finite fields? Sure! need addition, subtraction,
multiplication and division, so ll your favonte algon
a . Gaussian Eliminah multiplicationand division , so that shill works over IFq. ASIDE: Can we shill solve li
systems efficiently
finite fields? Sure!
MI your favorik algorith
Ceg, Gaussian Elimination
need addition, subtect
multiplication and division, s
that shill works over IF -

• Consider the following problem:

Given $\check{c} \in \overline{\mathbb{F}_q}^n$, and $\overline{Ge\mathbb{F}_q}^{n*k}$, find $x \in \mathbb{F}_i^k$ s.t. $\Delta(G.x, \check{c})$ is minimized.

aka, find the codeword closest to a received word E.

- . This problem (called MAXIMUM-LIKELIHOOD DECODING & LINEAR CODES) is NP-hard in general [BerleKamp-MeEliea-vantilburg ¹⁹⁷⁸] , even if the code is known in advance and you have an arbitrary amount of preprocessing time [Bruck-Noar ¹⁹⁹⁰ , Lobstein ¹⁹⁹⁰] . It's even NP-hard to approximate (within ^a constant factor) ! [Arora -Babai -Stern-Sweedyk ¹⁹⁹³] . the the following problem:

Carrier Cell (1990) problem:

Carrier Cell (1990) for set $\overline{E_{(n)}}$ for set $\overline{E_{(n)}}$ for set $\overline{E_{(n)}}$ for set $\overline{E_{(n)}}$ for $\overline{E_{(n)}}$ for $\overline{E_{(n)}}$ for $\overline{E_{(n)}}$ for $\overline{E_{(n)}}$
- Even computing the minimum distance of linear codes is NP hard!
- · This all sounds bad, but remember that NP-hardness is a worst-case condition. There exist linear codes that are (probably) hard to decode, but that doesn't mean that all of them are .
- We will spend most of this class talking about how to get efficiently-decodable codes. But first let's see one application where the hardness is a good thing.
- . Achually, it's not really clear what " NP hard" or "computational efficiency" means have. (Besides the fact that we did not define them). In particular, these notions make sense as the input size grows . What is growing? We'll come back to this in a moment.

|

Vagin {detour } MCELIECE CRYPTOSYSTEM (3) APPLICATION: Suppose that Alice and Bob want to talk SECURELY. Now there is no noise, just an EAVESDROPPER Eve. Hi Bob! My bonk password is Password1. EVE is ALICE listening but is BOB not the intended recipient · In PUBLIC KEY CRYPTOGRAPHY, everyone has a public key and a private key. To send a message to Poob, Alice encrypts it using Bob's public key. · Bob decodes it with his private key. We hope that this is secure as long as Bob's private key stays private. HERE Is such A scheme, using binary linear codes: · Bub choses: G ϵ Hz is the generator matrix for an (appropriate) efficiently decadable binary linear code C. <u>LThe McEliece</u> system uses something called a "Goppa Code" but we will not go into details in these notes. $S \in \mathbb{F}_{a}^{k \times k}$ · Bob chooses: • A random invertible • A random permutation matrix $P \in \mathbb{F}_2^{n \times n}$ · Bob's private key: (S, G, P) \overrightarrow{G} = · Bob's publickey: and t \vert 1 ${\mathcal P}$ G \mathcal{S}

To send a message $x \in \mathbb{F}_2^k$ to Bob:

- chooses a random vector ee \overline{H}_{2}^{n} with $wt(e)=t$
- Alice sends Bob $Gx + e$

. Alice chooses a random vector e
Alice sends Bob $\hat{G}x + e$
To decrypt Alice's message $\hat{G}x + e$

- · Bob computes P^{-1} $(\hat{G}x + e) = GSx + P^{\dagger}e = GSx + e^r,$ where $wt(e') = t$
- · Bob uses his efficient decoder for C to find S.x

.

• Bob computes $x = S^{-1}$

Why might this be secure?

(

Scheme continued.

To send a message $x \in \mathbb{F}_k^k$ to Beb:

• Alice chooses a rombon vector ee \mathbb{F}_k^* with $wt(e) = t$

• Alice sends Bob $Gx + e$

• To decrypt Alices message $Gx + e$

• To decrypt Alices message $Gx + e$

• Suppose Eve sees $\hat{G}x + e$. She knows \hat{G} and t , so this problem is the same as decoding the code \hat{C} ={ \hat{G} x \x= F_t^k } ions continued.

• Sound a measure $x \in F_{\epsilon}^{\perp}$ to Beb :

• Alice chronous a measure $\epsilon \in F_{\epsilon}^{\perp}$ is Beb :

• Alice served Both Discordinates of ϵ is ϵ if ϵ

• Beb computes ϵ is ϵ if ϵ is ϵ if from terrors. WE HOPE THIS IS HARD. emo contenual...

is send a mussage $x \in F_n^k$ in Blue:

- Mice shows a contenum vector $e \in F_n^*$ estimated $e = e^x$

- Mice screeness a probable $\hat{G}x + e$

- Red computes - Particular contenum in the contenum of $\hat{G}x + e$

Note : Decoding $Gx + e$ is hard for Eve" is NOT the same as "Maximum likelihood decoding of -
Note linear codes is NP -hard :

0
First, we have
Second, NP-hari .
So
dn lineer codes is NP.
Inne promise thet there Were <t errors.
Inne promise thet there were <t errors. . . .

In the company's state The assm that " Decoding \hat{G} Xte is hard" (for an appropriate choice of G) is called the MCELIECE Assumer TON. Some people believe it and some don't.

lend {detour}

4 OFF TO ASYMPTOPIA

We'll return to computational issues later - but first we need to talk about what we mean by "for large n.". So for now let's return to the combinatorial question:

WHAT IS THE BEST TRADE -Off between RATE and DISTANCE ?

So far we've seen two bounds:

4) OFF TO ASYHFDPHA

\nWell return to computational issues later — bad first we need to talk about what we mean by "for large n." So for now let's return to the Conditional function.

\n7. What T IS THE BEST TRADE-OFF RATE and DISTANCE?

\n8. So far we've seen two bounds:

\n1. -
$$
\pm
$$
: $\log_1(\sqrt{d_1}(\cdot, n))$: \pm (Bihert) for IZ1 = ?

\n9. So for particular, d, R, n, \pm (Bihert) for IZ1 = ?

\n10. For particular, d, R, n, \pm (Bihert) for IZ1 = ?

\n11. If $\log_1(\sqrt{d_1}(\cdot, n))$: \pm (Bihert) for IZ1 = ?

\n12. By the original image, $\frac{1}{2}$ and $\frac{1}{2$

So for particular d , k,n, these tell us something ... but what do they tell us in general ? And what does " in general " mean?

We aregoing to think about the following limiting parameter regime :

n, k , ^d [→] ^A so that kn [→] ^R and I [→] f approach constants .

Motivations:

/

- ID It will allow us to betterunderstand what's possible and what's not
- (2) In many applications, n , k.d arepretty large and R.S are the things we want to be thinking about .
Case of the thinking about .
- Cs) It will let us talk meaningfullytrigonously about computational complexity.

DEF A FWHLY of GOES is a collection
$$
C = \{C_i\}_{i=1}^{\infty}
$$
, where C_i is an (n_i, k_i, d_i) (code).

\nThe RME of C is R(C) := 1.86. k/n_i

\nThe RELATIVE DISTRIBUTICE of C is S(C) := 1.86. k/n_i

\nThe RELATIVE DISTRIBUTICE of C is S(C) := 1.86. k/n_i

\nNotes:

\n\n- We will frequently abuse, notation and refer to C as a "Coke," and well drop the subscept i and just this do not n_1k , $d \rightarrow \infty$.
\n- The alphabet of C is might depend on c. $(8dt + \theta + dcsn + will \text{ say the whole family})$
\n
\nEXAMPLE: In the *i*th order, you will insight that θ BOC.

\n\n- The *i*th order, the *i*th order, the *i*th term, the *i*th term

5) q-ARY ENTROPY

 $1 - \frac{1}{\kappa} \log(\text{Vol}_{\kappa}(d-1, n)) \leq \frac{\text{Cylbert}}{\text{Cylivial}} \text{ for } 1 - \frac{1}{n} \log_{\kappa}(\text{Vol}_{\kappa}(\frac{d-1}{2}), n))$

Now that we have an asymptotic parameter regime, how should we parse the GV and Hamming Duuncls?

In particular, what is
$$
\frac{1}{n} \log_{e} (\sqrt{d_{e}} (\frac{d-1}{2} \ln n))
$$
 in terms of S, if S=d/n ?
ok, so this is $\sum_{j=0}^{\frac{d-1}{2}} \binom{n}{j} (q-1)^{j}$,
but that is not very helpful.

DEF. The q-ary entropy function
$$
H_q: [0,1] \rightarrow [0,1]
$$
 is defined by
\n $H_q(x) = \chi \log_q(q-1) - \chi \log_q(x) - (1-x) \log_q(1-x)$.

This generalizes the BINARY ENTROPY FUNCTION $H_z(x)$ = $H(x)$, which you may have seen. The reason we care (for this class) is that $H_1(x)$ captures $Vol_2(xn)$ nicely:

PROP. Let
$$
q \ge 2
$$
 be an integer, and let $0 \le p \le 1-1/q$. Then
\n(i) $Vol_q(n, pn) \le q^{n \cdot H_q(p)}$
\n(ii) $Vol_q(n, pn) \ge q^{n \cdot H_q(p) - o(n)}$

A himchion fén)
Is o(n) if

 $\frac{\ln n}{n} \rightarrow 0$ as $n \rightarrow \infty$

See EsseNTIAL CODING THEORY, Chepter 3 for a proof.

Proof idea: mess around with the binomial coefficients and use Stirling's formula.

ASIDE: You may have see $H_2(p)$ described in terms of the #bits it takes to describe something. That is, I can describe a random string of length in where each bit is 1 w/ probability p pretty reliably using $H_z(p)$ loits. There is a similar interpretation for q-ary enhopy.
Suppose you choose $x \in \mathbb{F}_q^{-n}$ s.t. each $x = \sum_{n=1}^{\infty} 0$ pob 1-p
Thun the number of bits you nucl to andominity pobp

describe \times is roughly $H_q(p)$.

QUESTIONS to PONDER

- 1 Can you think of strategies to improve the Hamming bound?
- (2) Is it possible to have a codes with $S > 1- \frac{1}{8}$ and $R > o$?

-