
CS 2501 EE 387- LECTURE 3- MORE LINEAR CODES

& APPLICATIONS to CRYPTO
.

§ ASYMPTOTICS !

#

AGENDAS TODAY 'S OCTOPUS FACT

① GV Bound Octopuses have no bones, and can
squeeze through very small spaces .sina.acyp.sg.am/iv:e:::e:as::::::::s:.::::::÷÷÷÷÷÷.④ Off to asymplopia !

⑤ Q -

any entropy
.

EEi3
Is.

⑧ Recap . Last time
,
we saw LINEAR CODES :

c. = {FLITE : xetgh ) -- feet : ITH o)
^

(
G is a GENERATOR MATRIX

ft
is a

PARITY-CHECK MATRIX .

• Linearalgebra works great if Fg is a field .
• This is super useful .

Today : A few useful things one can do with linear codes :

- GILBERT - VARSHAMOV BOUND
- MCEUECE CRYPTOSYSTEM

.

✓Technically ,this is a useful
thing you CAN 'Tdowith

linear codes
.

(
combinatorial

(Plus
,
a fewthings you can't do with any codes , useful or otherwise) .



⑤ The GILBERT VARSHAMOV BOUND

So far
,
we have seen the HAMMING BOUND

,
which is an

upperbound on the rate of a code .

(aka
, an IMPOSSIBILITY RESULT)

.

We can match it for n -- 7
,
k .-4

,
butwhat about in general?

Next
,
we'll seethe GILBERT-VARSHAMOV BOUND

,
which is a POSSIBILITY

RESULT

-

Ttm (GILBERT- VARSHAMOV)

et:&
. Eggman .:¥naII¥g!iii.III.Insists: /NOTE : You can remove theftp.l-iosdvndddtnII.ii#aIEsEeIend

comparethis to the Hammingbound, which
Theonlydifference

R s 1 , logg(VdgKdn
)) is this part .

n

We will talkmore about the relationship between these two later,
but for now just notice that RGV < RHAMMING ,

so

math is not broken .

We'll prove the GV bound now - it's pretty easy !
However

,

it's NOT KNOWN if we can do better in general !

OPEN#
QUESTION Do there exist binary codes that do better1-thantheGVbound.ffrallpag.ms?



-
This is

called the

PROBABILISTIC
METHOD.

Proof of the GV bound
.

t.ir:¥÷.i.
in

::::c:::¥d: iii.in:c.iii.pier:*
"" /Let C be a random subspace of Ff, of dimension k Fk

Let G be a random generator matrix for C .

USEFULF.net#ForanyfixedxtO,G'XisunifomlyrandominFqlEInformal proof : Becauseofall the symmetry, how could it beany other way?|frmalproof:Funexerci#
Now
,
disHel - ending,ogwtk)

-

xmeifgiysozwt (
G '× )I:÷÷÷÷÷÷÷÷÷i÷÷÷÷:÷ ÷÷÷:÷÷÷:÷÷÷÷÷÷÷÷÷÷fPl F xetfgk : wtfG.x) ed } E qk . Volgld- I, n ) .

nq
Thus

,
we win as long as this is E 1 . Taking logs of both sides

,
we win if

k - n t log g( Volgfthn ) ) s 0

So choose k = n - log g(
Volgold - I , n)) -I, and weare done . BBB

-



② EFFICIENCY ( ? )

• If C is linear
,
we have an efficient encoding map X

t G. x
The computational cost is one matrix-vector multiply

• If C is linear with distance d
,
we can DETECTED-1 errors efficiently :

If O - wheeled-I and CEC
,
then H(Cte ) = H -e t O

, so

just check if HE -70 .

• If C is linear with distanced
,
we can CORRECT Ed- I ERASURES efficiently :

We have

- ¥ n- Id-1) rows are
still OK

±
⇒ n Because thedistance is d

,
there is

get ridof
I d-"{µ I]

exactly one def
"

that is consistent
theerased x
rows

Cj c
,

with these equations , and hence

G
'

is full rank
.

⇒ Solve this linear system G
'

x -- c
' for × .

-
• If C is linear with distanced

,
can we ASIDE : Can we still solve linear
1-

CORRECT L J ERRORS efficiently ? systems efficiently over
finite fields sure !

:#www.nke.dhii.Y.geaneiheis.ktkamrd.de
! µ" ÷:::÷÷:need addition

,
subtraction

,

multiplicationand division , so

that still works over Aq .
--



• Consider the following problem :

/Givencc-II-j.andGC-Fqmif-ndxettjs.t.tt/Gx#minimizec
aka

,
find the codeword closest to a received word E.

• This problem (called MAXIMUM - LIKELIHOOD DECODING for LINEAR CODES)
is NP-hard in general [BerleKamp-MeEliea-vantilburg 1978] , even if
the code isknown in advance and you

have an arbitrary amount of

preprocessing time [Bruck
-Noar 1990

,
Lobstein 1990] .

It's even NP-hard

to approximate (within a constant factor) ! [Arora -Babai- Stern-Sweedyk 1993] .

• Even computing theminimum distance of linear codes is NP hard !

•This all sounds bad
,
but remember that NP-hardness is a worst -case

condition . There exist linear codes that are (probably) hard to decode , but

that doesn't mean that all of them are .

•We will spend most of this class talking about how to get efficiently -decidable
codes

.
But first let's see one application where the hardness is a good thing

-
" """& "" "+ ""% " """

"
" """ " "

""""""d #"""
"

|means here .
(Besides the fact thatwe did not define them)

.

In particular, these notions make sense as the input size grows .fwhatisgrowi.g.ve#ebackohisiamomt.



begin {detour]

③ APPLICATION : MCELIECE CRYPTOSYSTEM

suppose that Alice and Bob want to talk SECURELY
.

Now there is no noise
, just an HEAVESDROPPER Eve

.

Hi Bob ! My bank<paiPawd1 ④ µ1- * ✗
✗ EVE is

ALICE
BOB listening but is

not the intended

recipient

• In PUBLIC KEY CRYPTOGRAPHY , everyone
has a public key and a private key .

• To send amessage to Bob, Alice encrypts it using Bob's public key .
• Bob decodes it with his private key .

- We hope that this is secure as long as Bob's private key stays private .

HER-t-suu-ASHEME.us/hgbinarylinearoodes:
nxk

• Bob chooses : Gert is the generator matrix for an 1appropriate)
-

efficiently decidable binary linear code C."
" """ ""

+
from terrors something called a

"

Goppa Code;
but we will not go into details

• Bob chooses : • A random invertible g c- ffakxk
'" these notes

.

• A random permutation matrix Petti
"

• Bob 's private key : (S , G , P)

• Bob's publickey :
É = [ ☐

☐
,

and t

←
-

P G S

• Alice chooses a random vector ee Iti with wt (e) =t

• Alice sends Bob G' ✗ +eµ
..
.....,

... .

• Bob computes P
" ( ÉX +e) = Gsx + P"e = Gsx + e' , where

wtle ' )=t
• Bob uses his efficient decoder for C to find 5.x

•BobcomputesX=5É



-

HEREI-ssuutASCHEME.us ing binary linear codes :

• Bob chooses : Getz
""

is the generator matrix for an (appropriate)
efficiently deadable binary linear code
↳ we'll seesomesoothsay , decodeble from t errors?

"

• Bob chooses : . A random invertible SE Fak
k

t:÷÷÷÷÷÷:÷÷÷÷÷÷÷: """ """ I
chooses a random vector ee ITI with wtleft

• Alice sends Bob Ex te

To decrypt Alice's message Ix te :

• Bob computes p
- ' ( Ext e ) = Gsx t P'

'

e = Gsx t e'
,
where
wt le ' ) = t

• Bob uses his efficient decoder for C to find S -X

• Bob computes X = S
- '

- SX /
-

Whymight this be secure?
.

Suppose Eve sees Ix te .

She knows G' and t
,
so this problem is the same as decoding thecode E :{cixlxefhk}

from terrors
. WE HOPE THIS IS HARD

.

-

Note :
"

Decoding dx te is hard for Eve
"

is Not the same as
"

Maximum likelihood decoding of
-

linear codes is NP - hard :

I :÷:!::::is::::t7:::S:'m::: ten::p. weneed an average... .sn/The assm that "

Decoding IX te is hard
"

(for an appropriate choiceof G) is called

the MCELIECE ASSUMPTION.
Some people believe it and some don't .

-

lend{detour}



④

OFFTOASYMPTOPIAWE
'll return to computational issues later - but first we need to talk

about what we mean by
" for large n

"

.

So for now let 's return to the

combinatorial question :

WHAT IS THE BEST TRADE -Off between RATE and DISTANCE ?
-

So far we've seen two bounds :

uraivlbrsntmov r Hamming
1 - E. loggfvolgfd- I , n)) -⇐ Optimal kin E L - In - logg (Vol,#t , n ))

for LEI -- q

So for particular d , k , n , these tell us something . . .
but what do they

tell us in general ? And what does "

in general
"

mean?

We aregoing to think about the following limiting parameter regime:

-/ n , k , d → A so that kn→R and I → f approach constants .
-

Motivations :

ID Itwill allow us to betterunderstand what's possible and what's not
(2) In many applications, n ,

kid arepretty large and R
.
S are thethings wewant to bethinking about .

Cs) It will let us talk meaningfullytrigonously about computational complexity.



DEIFAt-AMILY-o-D-sisacolkclionc-SG.li?,wheoe
-

Ci is an Cni
,
ki

,
di ) code

.

qi

The RATE of Cis RIC) :-
- lim kiln

;

is| ,y,y÷,,,gg .ge , gµ, , ya ,,n ,
Notts:n÷www.g.n.y.m.m.n.n.na.m.e.a.wg.n.my.m.me/ysubscript i and just think about n , kid → • .[The alphabet of Ci might depend on i. (But if it doesn't will say the whole family

§izeq
E-XAMPLE.tn the in-class exercises

, you
will investigate HAMMING CODES

.

The ith code Ci is a (2" -1 , É - i-1 , 3)a cook .

Ci is defined by its parity-checkmatrix,

¥¥f¥¥£%i"Y /Hi =
Vector as a column .

The RATE of this family is him =L
.

I
a-→a1

.The RELATIVE DISTANCE is dim 312' -1 = 0
.

if

Our Question : What is the best trade-off between R(C) and 81C) ?
(in the asymptotic setting )

Easier question : can we obtain codes with R(C) 7- 0 and Jfc) 7-0?

-

DEF_ Such a code (with RK) >0,8K)> 0) /|iscaHedAGD



ur tumor
r Hamming

③ of
-ARY ENTROPY 1 - t.eoggvoegfd.hn)) ⇐ optimal kin E L - In - logo (Vold# int)

for LEI -- q

Now that we have an asymptotic parameter regime, how should we parse the
GV and Hamming bounds ?

In particular, what is Hogg( Volg ( VII. n)) in terms of S
,
if fidh ?

"

ok.su#sis t
(nj ) (g- IT ,

butthatisnotveryhelpful.DE
F
.
The

g-any entropy function Hg :[0,17→ [0 ,
IT is defined byTHglxl-x.logglq-h-xlogglxl-H-xllogg.lt#

This generalizes the BINARY ENTROPY FUNCTION HIM = HCA
,
which you may have seen .

The reason we care (for this class ) is that Hglx) captures Volqfxn ) nicely :

-

PROP
.

Let go.
2 be an integer, and let Osp et- kg.

Then

Ti÷÷÷±÷÷:!
See ESSENTIAL CODING THEORY

, Chapter3 for a proof.
[Proof idea : mess around with thebinomial coefficients and use Stirling 's formula

.]

as

"e:÷÷÷÷÷
probability p pretty reliably using Hdp) bits.

There is a similar interpretation for g- any entropy .
Suppose you choose xe Fg

"
sit . each Xi = {mondoPm? lfnbpThen the number of bits you need to

describe x is roughly Hqlpl .



1 - -
- -

- - - - - • - - • - - •- - - - - - -

www.gloimenimgs
:

HIM

i
"6 'b 1/2 213 % 1

×

-

Sopnpwlie [You can seethese by taking Taylor expansions ] :

y
p is

reasonable and

• If g is really big , then Hglp) =

p
- logglq- it t logglsluft) tlogglsluff ) - p
--

(so
, eventually the plot looks like Kitch..!!"lY1

really small

/ . . .
. ..... .. . . ..

"
,
." ,m**¥÷µ";÷÷÷÷,+µ÷÷÷;÷/- plogqlllp)

(so, near 0 all those curves look like InnHgx÷ )
-

Now
,
we can take limits in the GV and Hamming bounds to obtain :

.tn#tmmnaonvranykmig/ ¥%BYnY%Y¥IifIs;mI"-

C of q - any codes,

RCC) ⇐ I - Hg(8kHz) exists a g- any family of codes C w/✓
gets and

4.nine :*!": '"slim's /RkktHd/
Proof : FUN EXERCISE (giventhenonasymphlicversion)



-

Nojhl : this answers our

Now itseagigeygompmtmuwobounds.LI?gim:::::;ng!?I!Now
,
can we find some

This is the explicit ones with efficient alys ??

picture forged : fthfdebefitebztsomewnere-A.in:*:*.
. I

LS (Relativedistance)

GV bound
for binary codes
-

SOMEQUES.TO#QUESM0N- Are there families of codes that beat the GV bound ?

- -
L J

/÷÷÷÷÷÷÷÷÷÷÷÷÷:÷÷÷±÷÷÷÷÷ii÷÷÷÷÷÷÷¥:- →
ANSWERS

. .

for large alphabets, yes . ANSL .

? ? ?

(We'll see soon) for binary codes, recent work
office -Shima 2017] gives something
Hosein avery particular parameter

regime . . -

but in general, OPEN PROBLEM !
I



QUESTIONS to PONDER

① Can you think of strategies
'

to improve the Hemming bound !
(
family of

② Is it possible to have a
- codes with S > I - kg

and R > o ?

-


