CSAO/EE 387 - LECINRE 6 - MAVING RSGRES
\nAGENDA
\nO. BCH. Gode
\nO. Red-Nuller (cdes. Fpart I)
\nO. Chrosterated Cdes. Fpart I
\nConcretated Codes. Fport I
\nConcretated Codes. Fport I
\nConcretized Codes. Fport I
\nConcretized Codes. Fport I
\nConcret's second's' Some other was
\nmodel. Sdomor Cobe. A set of the other series
\nand they have efficient decoding algorithms.
\nThat's a profit's good story. (Haylex we should just stop here?)
\nHOMBER, it was a second, a second, if it is not a good list of the 2000
\nSoAL. Obtain Enclor (da, efficiently anobustible), ASIMITION 19600
\nGOM. . Obtain Enclor (da, efficiently anobustible), ASIMITION 19600
\nGOM. . Obtain Enclor (da, efficiently anobustible), ASIMITION 19600
\nGrow. In this case, I will be a few ways to approach. This problem.
\nHence: The second, I will be a few words in the solution of the
\nthe short of, n' k' RS code:
\n
$$
Rate = \frac{k' \log_4(q)}{n' \log_4(q)} = \frac{k'}{n' \log_4(q)} = \frac{k'}{n' \log_4(q)} = \frac{k+1}{n \log_4(q)} = \frac
$$

Solve STRANNAN is NOT asymptotically good.
\nIF R is constant, then
$$
5 \rightarrow 0
$$
.
\n**EXH** Codes.
\nWhat if we just take RS(n,k) 0.5013 ?
\n**DEF.** Let $n = 2^m - 1$, *let* γ be a primitive element of F_2^n .
\nThen for $d \le n$, define.
\nBCH(n,d) = $\{ (c_{0,j-1}c_{n-j}) \in F_2^{-n} | c(j) = 0 \ \forall j=j...,d+1 \}$
\nNotice that this is exactly the same as our def, of RS codes, except that we restrict $(c_{0,j-1}c_{n-j}) \in F_2^{-n}$ instead of F_2^n . In particular, $\frac{d}{dx}(\delta(x)(n, d)) = 0$.
\nNote that this is exactly the same as our def, of RS codes, except that we result $(c_{0,j-1}c_{n-j}) \in F_2^{-n}$ instead of F_2^n . In particular, $\frac{d}{dx}(\delta(x)(n, d)) = 0$.
\nNote that this is exactly the same as our def, of RS codes, except that we result $(c_{0,j-1}c_{n-j}) \in F_2^{-n}$ instead of F_2^{-n} . In particular, $\frac{d}{dx}(\delta(x)(n, d)) = 0$.
\n**NOTE EXH** codes are linear constant; three are $d \le 3$ such exactly.
\n**CHAPTER 1** So, RH codes are binary codes that we'd the Simplen bound?
\n**CHAPTER 1** So, RH codes are binary codes that we'd the Simplen bound?
\nThus, $\frac{d}{dx} = \frac{1}{2} \log \frac{1}{x} \log \frac{1}{x$

The problem is that the constraints $c(\gamma^3) = 0$ are linear over F_{2m} ,
not over F_a . Fortunately, BCH codes ARE still linear over F_2 :

BCH (n,d) is F_z -linear with dimension $\geq n - (d-1)$ lg $(n+1)$. CLAIM.

L

Proof:

\nEach constant
$$
c(y^i) = 0
$$
 is actually $m = log_2(n)$ linear constants over H_2 . To see this, we'll use the fact that $H_{\overline{2}}m$ is actually a vector space over H_2 of dimension m :

\nLet $h = 0$ and $h = 0$.

\nSo it makes sense to write elements a cH_2 in a vector V_2 and W_2 is a vector W_2 .

\nSo c is a vector W_2 and W_2 is a vector W_2 .

\nThen $c(y^i) = 0$ means:

\n
$$
\sum_{i=0}^{n-1} c_i \cdot y^{ij} = 0 \iff \sum_{i=0}^{n-1} \frac{c_i}{c_i} \cdot \frac{[c_i \cdot b_i \cdot b_i]}{[c_i \cdot b_i \cdot b_i]} = 0
$$
\n
$$
\Leftrightarrow \sum_{i=0}^{n-1} \frac{[c_i \cdot b_i \cdot b_i \cdot c_i \cdot b_i]}{[c_i \cdot b_i \cdot b_i]} = 0
$$
\nwhere m is a scalar $h = 0$ and all m are constants.

\nand all m and m and m are constants.

\n $m = m(d - 1) = n - \lfloor a_m(n+1) \cdot (d - 1) \rfloor$ as claimed.

2 BINARY REED-MULLER CODES

(Sill y) idea: just do RS codes over
$$
\mathbb{F}_z
$$
 directly!
This is obviously silly since (a) deg(f) $\leq q-1 = 1$ to be interesting
(b) $\alpha_1, ..., \alpha_n$ should be distinct pts in \mathbb{F}_z , so $n \leq 2$.

However, one fix is to add more variables.

DEF. The BINARY m-VARLATE RED-HULER CODE of DEGREE r is
\nRM₂ (m, r) =
$$
\left\{ (f(a_1), f(a_2), ..., f(a_{2n})) : f \in F_{2}[X_1, ..., X_m] \right\}
$$
, deg(f) $\leq f$
\nRramedors:
\nBaranders:
\n
$$
\left\{ x_1, ..., x_{n-1} \in F_{2}^m, \text{lim, for } x \in F_{2}^m, \text{lim, for } x \in F_{2}^m \right\}
$$
\n
$$
\left\{ x_{n-1}, ..., x_{n-1} \in F_{2}^m, \text{lim, for } x \in F_{2}^m \right\}
$$
\n
$$
\left\{ x_{n-1}, ..., x_{n-1} \in F_{2}^m, \text{lim, for } x \in F_{2}^m \right\}
$$
\n
$$
\left\{ x_{n-1}, ..., x_{n-1} \in F_{2}^m, \text{lim, for } x \in F_{2}^m \right\}
$$
\n
$$
\left\{ x_{n-1}, ..., x_{n-1} \in F_{2}^m, \text{lim, for } x \in F_{2}^m \right\}
$$
\n
$$
\left\{ x_{n-1}, ..., x_{n-1} \in F_{2}^m \right\}
$$
\n
$$
\left\{ x_{n-1}, ..., x_{n-1} \in F_{2}^m \right\}
$$
\n
$$
\left\{ x_{n-1}, ..., x_{n-1} \in F_{2}^m \right\}
$$
\n
$$
\left\{ x_{n-1}, ..., x_{n-1} \in F_{2}^m \right\}
$$
\n
$$
\left\{ x_{n-1}, ..., x_{n-1} \in F_{2}^m \right\}
$$
\n
$$
\left\{ x_{n-1}, ..., x_{n-1} \in F_{2}^m \right\}
$$
\n
$$
\left\{ x_{n-1}, ..., x_{n-1} \in F_{2}^m \right\}
$$
\n
$$
\left\{ x_{n-1}, ..., x_{n-1} \in F_{2}^m \right\}
$$
\n
$$
\left\{ x_{n-1}, ..., x_{n-1} \in F_{2}^m \right\}
$$
\n
$$
\left\{ x_{n-1}, ..., x_{n-2} \in F_{2}^m \
$$

So dist (
$$
RM_2(m,r)
$$
) $\geq 2^{m-r}$. This is because $RM_2(m,r)$ is linear, and so

And, it turns out this is the correct answer: consider $f(\chi_1, \ldots, \chi_m) = \chi_1 \cdot \chi_2 \cdots \chi_n$ This vanishes whenever any of X_1 ,..., $X_r = O$, and so

$$
\left| \begin{array}{c} 0 \\ \frac{1}{2} \alpha \in \mathbb{F}_{2}^{m} : \left| f(\alpha) \neq 0 \right| \leq 1 \end{array} \right| = \left| \begin{array}{c} \frac{1}{2} \alpha \in \mathbb{F}_{2}^{m} : \alpha_{1} = -\alpha_{r} = 1 \end{array} \right| = 2^{m-r}
$$

$$
\begin{array}{ccc}\n\text{So} & \text{for } RM_2(m,r): & n = 2^m \\
& k = Vol_2(r,m) & \Rightarrow & R = Vol_2(r,m) \\
\text{d} & = 2^{m-r} & S = \frac{1}{2^r}\n\end{array}
$$

RM codes also admit efficient decoding algs. We'll see some of these later in the course .

Unfortunately , this isn't asymptotically good either. If $S = \Theta(1)$, then τ is constant but m^2 , so $R \cup O$.

 \overline{C} So this doesn't acheive the GOAL either...

. n_{in}.n_{out} symbols -

Parameters of Concetenated Codes:

alphabet: \sum_{in} in
message length: R_{in} , R_{out} \sum_{out} so the rate is $\frac{R_{in} \cdot R_{out}}{n_{in} \cdot n_{out}} = R_{in} \cdot R_{out}$ Cocleword length: nout . Min Proposition. The distance of $C_{in} \circ C_{out}$ is at least $d_{in} \cdot d_{out}$. pf. by picture: Let e, e' E Pin . Cont: $Enc_{in}(\alpha)$ \leftarrow $Enc_{in}(\beta)$ \mathfrak{C} Since theseblocks
are different codewords
in C_{in,} they differ in >d₁
places. $\mathfrak{g}^{\mathfrak{g}}$ $E_{\kappa_{in}}(\beta), \beta \neq \beta$. At least $\frac{d_{out}}{d}$ blocks of c, c' are encoding different symbols. · In each of those, there are at least d_{in} symbols in \mathbb{Z}_n that differ. So that's dont din differences tutal. $(in$ particular, the relative distance is $S = S_1 \cdot S_2$] DEF. The DESIGNED DISTANCE of a concatenated code as in \sim is did out Finally! Progress to our GUAL. To obtain an EXPLICIT, ASYMPTOTICALLY GUOD BINARY CODES: 1. Set $\left| \begin{array}{c} C_{out} \end{array} \right| = \text{Reed}$ -Solomon Cocles 2. Set Cin = EXPLICIT, ASYMPTOTICALLY GOOD BINARY CODE. \mathbb{D} . But actually it's OKAY!
The secret is that Cin will be short enough that we can do exhaustive shiff ٧ś efficiently. We'll see how this works next time!

QUESTIONS to PONDER

How would you efficiently decode ^a concatenated code ?

How would you efficiently decode Reed-Muller codes ?