CS256/Winter 2009 Lecture $\#1$

Zohar Manna

FORMAL METHODS FOR REACTIVE SYSTEMS

Instructor: Zohar Manna Email: manna@cs.stanford.edu Office hours: by appointment

TA: Boyu Wang Email: wangboyu@stanford.edu Office hours: Tuesday, Friday 3-5pm Durand 1st floor lounge

Web page:

http://cs256.stanford.edu

Course Meetings: MW11:00-12:15, Gates B12

Course work

- Weekly homework due Wed's before class.
- Final exam (8:30am-11:30am on Friday, March 20).
- No collaboration on homeworks and exam (but welcome otherwise).
- No late homeworks.

1-3

Textbooks

Manna & Pnueli Springer

- Vol. I: "The Temporal Logic of Reactive and Concurrent Systems: Specification" Springer 1992
- Vol II: "Temporal Verification of Reactive Systems: Safety" Springer 1995
- Vol. III: "Temporal Verification of Reactive Systems: Progress" Chapters 1–3, on Manna's web site.

Copies of lecture slides.

Papers.

Textbook Overview (Volume II)

Chapter 0: Preliminary Concepts [Summary of volume I]

Chapter 1: Invariance: Proof Methods

Chapter 2: Invariance: Applications

Chapter 3: Precedence

[Chapter 4: General Safety]

Chapter 5: Algorithmic Verification ("Model Checking")

Extra:

- \bullet ω -automata
- branching time logic CTL; BDDs

Transformational Systems

Observable only at the beginning and the end of their execution ("black box")

> input −→ system output \longrightarrow

with no interaction with the environment.

• specified by

input-output relations ⇓ state formulas (assertions) First-Order Logic

• typically

terminating sequential programs e.g., input $x \geq 0 \rightarrow$ output $z = \infty$ ط
ا∽ \overline{x}

Reactive Systems

Observable throughout their execution ("black cactus")

↓ ↑ ↓ ↑ ↓ ↑

system

↓ ↑ ↓ ↑ ↓ ↑

environment

 $|\longrightarrow$ time

Interaction with the environment

 $\bullet\,$ specified by

their on-going behaviors (histories of interactions with their environment) ⇓ sequence formulas Temporal Logic

- Typically
	- Airline reservation systems
	- Operating systems
	- Process control programs
	- Communication networks

Overview of the Verification Process

The Components

• System Description Language SPL (Simple Programming Language)

Pascal-like high-level language with constructs for

- concurrency
- nondeterminism
- synchronous/asynchronous communication

• Computational Model

FTS (Fair Transition System)

Compact first-order representation of all sequences of states that can be generated by a system

The Components (cont.)

• Specification Language

TL (temporal logic)

models of a TL formula are infinite sequences of states

• Verification Techniques

- algorithmic (model checking) search a state-graph for counterexample
- deductive (theorem proving) prove first-order verification conditions

States

 $\bullet\,$ vocabulary $\mathcal V$ — set of typed variables (type defines the domain over which the values can range)

– expression over \mathcal{V} $x + y$

– assertion over $\mathcal V$ $x > y$ • state s — interpretation over $\mathcal V$

• Σ — set of all states

Chapter 0:

Preliminary Concepts

Fair Transition System (FTS)

 $\Phi = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$

(represents a Reactive Program)

• $V = \{u_1, \ldots, u_n\} \subset \mathcal{V}$ — vocabulary

A finite set of system variables

System variables $=$ data variables $+$ control variables

 \bullet Θ — initial condition

First-order assertion over V that characterizes all initial states

Example: Θ : $x = 5 \land 3 \le y \le 5$ initial states: $\{x: 5, y: 3\}$ ${x : 5, y : 4}$ ${x : 5, y : 5}$

- τ finite set of transitions
	- For each $\tau \in \mathcal{T}$, $\tau : \Sigma \rightarrow 2^{\Sigma}$ (τ) is a function from states to sets of states) $-s'$ is a <u> τ -successor</u> of s if $s' \in \tau(s)$ $-\tau$ is represented by the transition relation ("next-state" relation) $\rho_{\tau}(V, V')$ where
		- V values of variables in the current state
		- V^\prime values of variables in the next state

Example: ρ_{τ} : $x' = x + 1$ means $s'[x] = s[x] + 1$

 $-$ special <u>idling</u> (stuttering) transition τ_I ,

 $\rho_{\tau_I}: V = V'$

Enabled/Disabled/Taken Transition

- For each $\tau \in \mathcal{T}$, τ is enabled on s if $\tau(s) \neq \emptyset$ τ is disabled on s if $\tau(s) = \emptyset$
- For an infinite sequence of states $\sigma: s_0, s_1, s_2, \ldots, s_k, s_{k+1}, \ldots$
	- $-\tau \in \mathcal{T}$ is enabled at position k of σ if τ is enabled on s_k
	- $-\tau \in \mathcal{T}$ is taken at position k of σ if s_{k+1} is a $\tau\text{-successor of }s_k$

Example:

 $\langle x:5, y:3\rangle \longrightarrow {\langle x:5, y:4\rangle}, \langle x:5, y:5\rangle}$

"When in state $\langle x : 5, y : 3 \rangle \tau$ may increment y by either 1 or 2, and keep x unchanged."

 $\langle x : 5, y : 4 \rangle$ and $\langle x : 5, y : 5 \rangle$ are τ -successors of $\langle x : 5, y : 3 \rangle$.

- $\mathcal{J} \subset \mathcal{T}$: set of just (weakly fair) transitions
- $C \subseteq T$: set of compassionate (strongly fair) transitions

Example: ρ_{τ} : $x = 5 \land x' = x + 1 \land y' = y$ τ is enabled on all states s.t. $s[x] = 5$ and disabled on all other states σ : \dots s_k $\overline{\langle x:5,y:3\rangle},$ s_{k+1} $\overline{\langle x : 6, y : 3 \rangle} \dots$ τ is enabled at position k τ is taken at position k

Computation

Infinite sequence of states

 σ : s_0 , s_1 , s_2 , ...

is a computation of an FTS Φ (Φ -computation), if it satisfies the following:

- Initiality: s_0 is an initial state (satisfies Θ)
- Consecution: For each $i = 0, 1, \ldots$ $s_{i+1} \in \tau(s_i)$ for some $\tau \in \mathcal{T}$.

• <u>Justice</u>: For each $\tau \in \mathcal{J}$, it is not the case that τ is continually enabled beyond some position j in σ but not taken beyond j .

Example:

$$
V: \{x : \text{integer}\}\
$$

\n
$$
\Theta: x = 0
$$

\n
$$
\tau: \{\tau_I, \tau_{\text{inc}}\} \text{ with } \rho_{\tau_{\text{inc}}} : x' = x + 1
$$

\n
$$
\mathcal{J}: \{\tau_{\text{inc}}\}\
$$

\n
$$
c: \emptyset
$$

$$
\sigma: \langle x:0\rangle \xrightarrow{\tau_I} \langle x:0\rangle \xrightarrow{\tau_I} \langle x:0\rangle \xrightarrow{\tau_I} \ldots
$$

satisfies Initiality and Consecution, but not Justice.

Therefore σ is not a computation.

(In any computation of this system, x grows beyond any bound.)

$$
\sigma : \begin{cases} \langle x:0\rangle \longrightarrow \langle x:1\rangle \longrightarrow \langle x:2\rangle \longrightarrow \langle x:2\rangle \longrightarrow \\ \langle x:3\rangle \longrightarrow \langle x:3\rangle \longrightarrow \langle x:3\rangle \longrightarrow \\ \langle x:4\rangle \longrightarrow \cdots \end{cases}
$$
is a computation

Question: $\rho_{\tau_{\text{inc}}}$: $(x = 0 \lor x = 1) \land x' = x + 1$ Is

$$
\sigma : \left[\begin{array}{ccc} \langle x:0\rangle \longrightarrow \langle x:1\rangle \longrightarrow \langle x:2\rangle \longrightarrow \\ \langle x:2\rangle \longrightarrow \langle x:2\rangle \longrightarrow \cdots \end{array} \right]
$$

a computation?

• Compassion: For each $\tau \in \mathcal{C}$, it is not the case that τ is enabled at infinitely many positions in σ , but taken at only finitely many positions in σ .

Example: $V: \{x, y: \text{integer}\}\$ Θ : $x = 0 \wedge y = 0$ $\mathcal{T}:\{\tau_I,\tau_x,\tau_y\}$ with $\rho_{\tau_x}: x' = x + 1 \mod 2$ $\rho_{\tau_y}: x = 1 \wedge y' = y + 1$ $\mathcal{J}: {\{\tau_x\}}$ $C: \{\tau_u\}$ σ : $\langle \overset{x}{0}$ Õ, \boldsymbol{y} $\begin{CD} \begin{CD} \begin{pmatrix} y \ 0 \end{pmatrix} & \xrightarrow{\tau_x} \langle 1, 0 \rangle & \xrightarrow{\tau_x} \langle 0, 0 \rangle & \xrightarrow{\tau_x} \ldots \end{CD} \end{CD}$ is not a computation: τ_y is infinitely often enabled, but never taken. (Note: If τ_u had only been just, σ would have been a computation, since τ_y is not continually enabled.)

FTS $\Phi = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$

Notation: $s_0 \stackrel{\tau_1}{\rightarrow} s_1 \stackrel{\tau_2}{\rightarrow} s_2 \stackrel{\tau_3}{\rightarrow} s_3 \rightarrow \ldots$

Note: For every two consecutive states s_i , s_{i+1} , there may be more than one transition that leads from s_i to s_{i+1} .

Therefore, several different transitions can be considered as taken at the same time.

Finite-State

- For a computation σ of Φ
	- $\sigma: s_0, s_1, s_2, \ldots, s_i, \ldots,$

state s_i is a $\underline{\Phi}$ -accessible state.

- Φ is finite-state if the set of Φ -accessible states is finite. Otherwise, it is infinite-state.
	- If the domain of all variables of Φ is finite, (e.g., booleans, subranges, etc.), then Φ is finite-state.
	- Even if the domain of some variables of Φ is infinite (e.g., integer), Φ may still be finite-state.

Example:

```
V: \{x : \text{integer}\}\\Theta : x=1\mathcal{T} : \{\tau_I, \tau_1, \tau_2\} with
             \rho_{\tau_1}: x = 1 \wedge x' = 2\rho_{\tau_2} : x = 2 \wedge x' = 1J, C : \emptysethas 2 accessible states:
\langle x : 1 \rangle and \langle x : 2 \rangle
```