CS256/Winter 2009 Lecture #1

Zohar Manna

FORMAL METHODS FOR REACTIVE SYSTEMS

Instructor: Zohar Manna

Email: manna@cs.stanford.edu Office hours: by appointment

TA: Boyu Wang

Email: wangboyu@stanford.edu Office hours: Tuesday, Friday 3-5pm

Durand 1st floor lounge

Web page:

http://cs256.stanford.edu

Course Meetings: MW11:00-12:15, Gates B12

Course work

- Weekly homework due Wed's before class.
- Final exam (8:30am-11:30am on Friday, March 20).
- No collaboration on homeworks and exam (but welcome otherwise).
- No late homeworks.

Textbooks

Manna & Pnueli Springer

Vol. I: "The Temporal Logic of Reactive and Concurrent Systems: Specification"

Springer 1992

Vol. III: "Temporal Verification of Reactive Systems: $\frac{\text{Progress}}{\text{Chapters 1--3, on Manna's web site.}}$

Copies of lecture slides.

Papers.

Textbook Overview

(Volume II)

Chapter 0: Preliminary Concepts [Summary of volume I]

Chapter 1: Invariance: Proof Methods

Chapter 2: Invariance: Applications

Chapter 3: Precedence

[Chapter 4: General Safety]

Chapter 5: Algorithmic Verification ("Model Checking")

Extra:

- \bullet ω -automata
- branching time logic CTL; BDDs

Transformational Systems

Observable only at the beginning and the end of their execution ("black box")

$$\xrightarrow{\text{input}} \boxed{\text{system}} \xrightarrow{\text{output}}$$

with no interaction with the environment.

• specified by

input-output relations

↓

state formulas (assertions)

First-Order Logic

• typically

terminating sequential programs e.g., input $x \ge 0 \to \text{output } z = \sqrt{x}$

Reactive Systems

Observable throughout their execution ("black cactus")

 \longrightarrow time

Interaction with the environment

\bullet specified by

 ${\rm their\ on\hbox{-}going\ behaviors}$ (histories of interactions with their environment)

 $\begin{tabular}{l} \downarrow sequence formulas \\ Temporal Logic \\ \end{tabular}$

• Typically

- Airline reservation systems
- Operating systems
- Process control programs
- Communication networks

Overview of the Verification Process

The Components

• System Description Language SPL (Simple Programming Language)

Pascal-like high-level language with constructs for

- concurrency
- nondeterminism
- synchronous/asynchronous communication

• Computational Model

FTS (Fair Transition System)

Compact first-order representation of all sequences of states that can be generated by a system

1-9

The Components (cont.)

• Specification Language

TL (temporal logic)

models of a TL formula are infinite sequences of states

• Verification Techniques

- algorithmic (model checking) search a state-graph for counterexample
- <u>deductive</u> (theorem proving) prove first-order verification conditions

Proof $Com(\Phi) \subseteq Mod(\psi)$ i.e., all computations of \varPhi are models of ψ

Counterexample computation σ of Φ , s.t. $\sigma \not\in \operatorname{Mod}(\psi)$

1-11 1-12

Chapter 0:

Preliminary Concepts

States

- vocabulary \mathcal{V} set of typed variables (type defines the domain over which the values can range)
 - expression over V x+y
 - assertion over \mathcal{V} x > y
- ullet state s interpretation over ${\cal V}$

Example:

 $V = \{x, y : integer\}$

 $s = \{x : 2, y : 3\}$

(also written as

$$s[x] = 2, \quad s[y] = 3)$$

x + y is 5 on s

x > y false on s

• Σ — set of all states

Fair Transition System (FTS)

$$\Phi = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$$

(represents a Reactive Program)

• $V = \{u_1, \dots, u_n\} \subseteq \mathcal{V}$ — vocabulary

A finite set of system variables

 $System\ variables = data\ variables\ +$

control variables

\bullet Θ — initial condition

First-order assertion over V that characterizes all initial states

Example:

$$\Theta: \ x = 5 \land 3 \le y \le 5$$

initial states: $\{x:5,y:3\}$

 ${x:5,y:4}$

 ${x:5,y:5}$

• \mathcal{T} — finite set of <u>transitions</u>

For each $\tau \in \mathcal{T}$,

$$\tau: \Sigma \to 2^{\Sigma}$$

 $(\tau$ is a function from states to sets of states)

- -s' is a $\underline{\tau}$ -successor of s if $s' \in \tau(s)$
- $-\tau$ is represented by the transition relation

("next-state" relation) $\rho_{\tau}(V, V')$ where

V – values of variables in the current state

V' – values of variables in the next state

Example:

 $\rho_{\tau}: x' = x + 1 \text{ means}$

$$s'[x] = s[x] + 1$$

- special idling (stuttering) transition τ_I ,

$$\rho_{\tau_I}:V=V'$$

Example:

$$\langle x:5,y:3\rangle \xrightarrow{\tau} \{\langle x:5,y:4\rangle, \langle x:5,y:5\rangle\}$$

"When in state $\langle x:5,y:3\rangle$ τ may increment y by either 1 or 2, and keep x unchanged."

 $\langle x:5,y:4\rangle$ and $\langle x:5,y:5\rangle$ are $\tau\text{-successors}$ of $\langle x:5,y:3\rangle.$

- $\mathcal{J} \subseteq \mathcal{T}$: set of <u>just</u> (weakly fair) transitions
- $C \subseteq T$: set of <u>compassionate</u> (strongly fair) transitions

Enabled/Disabled/Taken Transition

- For each $\tau \in \mathcal{T}$, $\tau \text{ is } \underline{\text{enabled}} \text{ on } s \text{ if } \tau(s) \neq \emptyset$ $\tau \text{ is } \underline{\text{disabled}} \text{ on } s \text{ if } \tau(s) = \emptyset$
- For an infinite sequence of states $\sigma: s_0, s_1, s_2, \ldots, s_k, s_{k+1}, \ldots$
 - $-\tau \in \mathcal{T}$ is enabled at position k of σ if τ is enabled on s_k
 - $-\tau \in \mathcal{T}$ is taken at position k of σ if s_{k+1} is a τ -successor of s_k

Example:

$$\rho_{\tau}: x = 5 \land x' = x + 1 \land y' = y$$

 τ is enabled on all states s.t. s[x] = 5 and disabled on all other states

$$\sigma:\ldots(\overline{\langle x:5,y:3\rangle},\overline{\langle x:6,y:3\rangle}\ldots$$

 τ is enabled at position k τ is taken at position k

Computation

Infinite sequence of states

$$\sigma$$
: s_0 , s_1 , s_2 , ...

is a computation of an FTS Φ (Φ -computation), if it satisfies the following:

- Initiality: s_0 is an initial state (satisfies Θ)
- Consecution: For each $i = 0, 1, \ldots, s_{i+1} \in \tau(s_i)$ for some $\tau \in \mathcal{T}$.

1-19

• <u>Justice</u>: For each $\tau \in \mathcal{J}$, it is <u>not</u> the case that τ is continually enabled beyond some position j in σ but not taken beyond j.

Example:

 $V: \{x: integer\}$

 $\Theta: x = 0$

 $\mathcal{T}: \{\tau_I, \tau_{\mathrm{inc}}\} \text{ with } \rho_{\tau_{\mathrm{inc}}}: x' = x + 1$

 \mathcal{J} : $\{ au_{ ext{inc}}\}$

 $\mathcal{C}:\emptyset$

$$\sigma: \langle x:0\rangle \xrightarrow{\tau_I} \langle x:0\rangle \xrightarrow{\tau_I} \langle x:0\rangle \xrightarrow{\tau_I} \dots$$

satisfies Initiality and Consecution, but not Justice.

Therefore σ is not a computation.

(In any computation of this system, x grows beyond any bound.)

$$\sigma: \left[\begin{array}{c} \langle x:0\rangle \longrightarrow \langle x:1\rangle \longrightarrow \langle x:2\rangle \longrightarrow \langle x:2\rangle \longrightarrow \\ \langle x:3\rangle \longrightarrow \langle x:3\rangle \longrightarrow \langle x:3\rangle \longrightarrow \\ \langle x:4\rangle \longrightarrow \cdots \end{array} \right]$$

is a computation

Question: $\rho_{\tau_{\text{inc}}}$: $(x = 0 \lor x = 1) \land x' = x + 1$ Is

$$\sigma: \left[\begin{array}{c} \langle x:0\rangle \longrightarrow \langle x:1\rangle \longrightarrow \langle x:2\rangle \longrightarrow \\ \langle x:2\rangle \longrightarrow \langle x:2\rangle \longrightarrow \cdots \end{array} \right]$$

a computation?

• Compassion: For each $\tau \in \mathcal{C}$, it is not the case that τ is enabled at infinitely many positions in σ , but taken at only finitely many positions in σ .

Example:

 $V: \{x, y: \text{integer}\}$ $\Theta: x = 0 \land y = 0$ $\mathcal{T}: \{\tau_I, \tau_x, \tau_y\} \text{ with }$ $\rho_{\tau_x}: x' = x + 1 \mod 2$ $\rho_{\tau_y}: x = 1 \land y' = y + 1$ $\mathcal{J}: \{\tau_x\}$ $\mathcal{C}: \{\tau_y\}$

$$\sigma: \langle \stackrel{x}{0}, \stackrel{y}{0} \rangle \xrightarrow{\tau_x} \langle 1, 0 \rangle \xrightarrow{\tau_x} \langle 0, 0 \rangle \xrightarrow{\tau_x} \dots$$

often enabled, but never taken. (**Note**: If τ_y had only been just, σ would have been a computation, since τ_y is not continually enabled.)

is not a computation: $\tau_{\boldsymbol{y}}$ is infinitely

FTS
$$\Phi = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$$

Run = Initiality + Consecution

Fairness = Justice + Compassion

Computation = Run + Fairness

Notation:
$$s_0 \stackrel{\tau_1}{\to} s_1 \stackrel{\tau_2}{\to} s_2 \stackrel{\tau_3}{\to} s_3 \to \dots$$

Note: For every two consecutive states s_i, s_{i+1} , there may be more than one transition that leads from s_i to s_{i+1} .

Therefore, several different transitions can be considered as taken at the same time.

Finite-State

• For a computation σ of Φ

$$\sigma$$
: s_0 , s_1 , s_2 , ..., s_i , ...,

state s_i is a Φ -accessible state.

- \bullet Φ is finite-state if the set of Φ -accessible states is finite. Otherwise, it is infinite-state.
 - If the domain of all variables of Φ is finite, (e.g., booleans, subranges, etc.), then Φ is finite-state.
 - Even if the domain of some variables of Φ is infinite (e.g., integer), Φ may still be finite-state.

Example:

 $V: \{x: integer\}$

 $\Theta: x = 1$

 $\mathcal{T}: \{ au_I, au_1, au_2\}$ with

 $\rho_{\tau_1} : x = 1 \land x' = 2$ $\rho_{\tau_2} : x = 2 \land x' = 1$

 $\mathcal{J},\mathcal{C}:\overset{\cdot}{\emptyset}$

has 2 accessible states:

 $\langle x:1\rangle$ and $\langle x:2\rangle$