
CS256/Winter 2009 Lecture #1

Zohar Manna

FORMAL METHODS FOR REACTIVE SYSTEMS

Instructor: Zohar Manna

Email: manna@cs.stanford.edu

Office hours: by appointment

TA: Boyu Wang

Email: wangboyu@stanford.edu

Office hours: Tuesday, Friday 3-5pm

Durand 1st floor lounge

Web page:

http://cs256.stanford.edu

Course Meetings: MW11:00-12:15, Gates B12

Course work

• Weekly homework due Wed’s before class.

• Final exam (8:30am-11:30am on Friday, March 20).

• No collaboration on homeworks and exam (but wel-

come otherwise).

• No late homeworks.

(CS256)

Practical

− Pentium Bug
− Ariane Bug
− expected government
 regulation for formal
 methods in
 signalling systems
 medical equipment
 power plants
 highway control

Concurrent Programs
(Hardware/Software)

 Mur , SMV, VIS,

− STeP
− others:
 model checking:

 KRONOS, ...
 deductive:
 ACL2, PVS,
 EVES, HOL, ...

 SPIN, UPPAAL,

Tools

− Model checking
− Deductive verification

− Combining model checking
 and deduction

− Specification methods

Theory

Automata

Temporal Logic Specifications

Verification

Mathematical Logic
(CS156 / CS157)

1-3

Textbooks

Manna & Pnueli Springer

Vol. I: “The Temporal Logic of Reactive and

Concurrent Systems: Specification”

Springer 1992

Vol II: “Temporal Verification of Reactive Systems:

Safety”

Springer 1995

Vol. III: “Temporal Verification of Reactive Systems:

Progress”

Chapters 1–3, on Manna’s web site.

Copies of lecture slides.

Papers.

1-4

Textbook Overview

(Volume II)

Chapter 0: Preliminary Concepts

[Summary of volume I]

Chapter 1: Invariance: Proof Methods

Chapter 2: Invariance: Applications

Chapter 3: Precedence

[Chapter 4: General Safety]

Chapter 5: Algorithmic Verification

(“Model Checking”)

Extra:

• ω-automata

• branching time logic CTL; BDDs

1-5

Transformational Systems

Observable only at the beginning and the
end of their execution (“black box”)

input−→ system
output−→

with no interaction with the environment.

• specified by

input-output relations
⇓

state formulas (assertions)
First-Order Logic

• typically

terminating sequential programs
e.g., input x ≥ 0 → output z =

√
x

1-6

Reactive Systems

Observable throughout their execution

(“black cactus”)

↓ ↑ ↓ ↑ ↓ ↑

system

↓ ↑ ↓ ↑ ↓ ↑

environment

| −→ time

1-7

Interaction with the environment

• specified by

their on-going behaviors

(histories of interactions with their environment)

⇓
sequence formulas

Temporal Logic

• Typically

– Airline reservation systems

– Operating systems

– Process control programs

– Communication networks

1-8

Overview of the Verification Process

1-9

The Components

• System Description Language

SPL (Simple Programming Language)

Pascal-like high-level language with

constructs for

– concurrency

– nondeterminism

– synchronous/asynchronous communication

• Computational Model

FTS (Fair Transition System)

Compact first-order representation of all sequences

of states that can be generated by a system

1-10

The Components (cont.)

• Specification Language

TL (temporal logic)

models of a TL formula are infinite

sequences of states

• Verification Techniques

– algorithmic (model checking)

search a state-graph for counterexample

– deductive (theorem proving)

prove first-order verification conditions

1-11

Reactive System Specification

SPL Program P TL formula ψ
↓

Fair Transition System (FTS) Φ ↓
↓

Verification

Proof
Com(Φ) ⊆ Mod(ψ)
i.e., all computations of Φ
are models of ψ

Counterexample
computation σ of Φ,
s.t. σ 6∈ Mod(ψ)

1-12

Chapter 0:

Preliminary Concepts

1-13

States

• vocabulary V — set of typed variables
(type defines the domain over which the values can
range)

– expression over V x+ y

– assertion over V x > y
• state s — interpretation over V

Example:

V = {x, y : integer}
s = {x : 2, y : 3}
(also written as

s[x] = 2, s[y] = 3)

x+ y is 5 on s

x > y false on s

• Σ — set of all states

1-14

Fair Transition System (FTS)

Φ = 〈V,Θ, T ,J , C〉

(represents a Reactive Program)

• V = {u1, . . . , un} ⊆ V — vocabulary

A finite set of system variables

System variables = data variables +
control variables

• Θ — initial condition

First-order assertion over V that
characterizes all initial states

Example:

Θ : x = 5 ∧ 3 ≤ y ≤ 5

initial states: {x : 5, y : 3}
{x : 5, y : 4}
{x : 5, y : 5}

1-15

• T — finite set of transitions

For each τ ∈ T ,
τ : Σ → 2Σ

(τ is a function from states to sets of states)

– s′ is a τ -successor of s if s′ ∈ τ(s)
– τ is represented by the

transition relation

(“next-state” relation) ρτ(V, V ′) where

V – values of variables in the current

state

V ′ – values of variables in the next state

Example:

ρτ : x′ = x+ 1 means

s′[x] = s[x] + 1

– special idling (stuttering) transition τI ,

ρτI : V = V ′

1-16

Example:

〈x : 5, y : 3〉 τ−→ {〈x : 5, y : 4〉, 〈x : 5, y : 5〉}

“When in state 〈x : 5, y : 3〉 τ may increment
y by either 1 or 2, and keep x unchanged.”

〈x : 5, y : 4〉 and 〈x : 5, y : 5〉 are τ -successors
of 〈x : 5, y : 3〉.

• J ⊆ T : set of just (weakly fair)

transitions

• C ⊆ T : set of compassionate

(strongly fair) transitions

1-17

Enabled/Disabled/Taken Transition

• For each τ ∈ T ,

τ is enabled on s if τ(s) 6= ∅
τ is disabled on s if τ(s) = ∅

• For an infinite sequence of states

σ : s0, s1, s2, . . . , sk, sk+1, . . .

– τ ∈ T is enabled at position k of σ

if τ is enabled on sk

– τ ∈ T is taken at position k of σ

if sk+1 is a τ -successor of sk

1-18

Example:

ρτ : x = 5 ∧ x′ = x+ 1 ∧ y′ = y

τ is enabled on all states s.t. s[x] = 5
and disabled on all other states

σ : . . .

sk︷ ︸︸ ︷
〈x : 5, y : 3〉,

sk+1︷ ︸︸ ︷
〈x : 6, y : 3〉 . . .

τ is enabled at position k
τ is taken at position k

1-19

Computation

Infinite sequence of states

σ : s0, s1, s2, . . .

is a computation of an FTS Φ (Φ-computation),

if it satisfies the following:

• Initiality: s0 is an initial state (satisfies Θ)

• Consecution: For each i = 0, 1, . . . ,

si+1 ∈ τ(si) for some τ ∈ T .

1-20

• Justice: For each τ ∈ J , it is not the case

that τ is continually enabled beyond some

position j in σ but not taken beyond j.

Example:

V : {x : integer}
Θ : x = 0
T : {τI , τinc} with ρτinc

: x′ = x+ 1

J : {τinc}C : ∅

σ : 〈x : 0〉 τI−→ 〈x : 0〉 τI−→ 〈x : 0〉 τI−→ . . .

satisfies Initiality and Consecution, but
not Justice.
Therefore σ is not a computation.

(In any computation of this system,
x grows beyond any bound.)

1-21

σ :

 〈x : 0〉 −→ 〈x : 1〉 −→ 〈x : 2〉 −→ 〈x : 2〉 −→
〈x : 3〉 −→ 〈x : 3〉 −→ 〈x : 3〉 −→
〈x : 4〉 −→ · · ·

is a computation

Question: ρτinc
: (x = 0 ∨ x = 1) ∧ x′ = x+ 1

Is

σ :

[
〈x : 0〉 −→ 〈x : 1〉 −→ 〈x : 2〉 −→

〈x : 2〉 −→ 〈x : 2〉 −→ · · ·
a computation?

1-22

• Compassion: For each τ ∈ C, it is not the

case that τ is enabled at infinitely many

positions in σ, but taken at only finitely

many positions in σ.

Example:

V : {x, y : integer}
Θ : x = 0 ∧ y = 0
T : {τI , τx, τy} with

ρτx : x′ = x+ 1 mod 2
ρτy : x = 1 ∧ y′ = y+ 1

J : {τx}
C : {τy}

σ : 〈x0,
y
0〉 τx−→ 〈1,0〉 τx−→ 〈0,0〉 τx−→ . . .

is not a computation: τy is infinitely
often enabled, but never taken.
(Note: If τy had only been just,
σ would have been a computation, since
τy is not continually enabled.)

1-23

FTS Φ = 〈V,Θ, T ,J , C〉

Run = Initiality + Consecution

Fairness = Justice + Compassion

Computation= Run + Fairness

Notation: s0
τ1→ s1

τ2→ s2
τ3→ s3 → . . .

Note: For every two consecutive states si, si+1, there

may be more than one transition that leads from si to

si+1.

Therefore, several different transitions can be considered

as taken at the same time.

1-24

Finite-State

• For a computation σ of Φ

σ : s0, s1, s2, . . . , si, . . . ,

state si is a Φ-accessible state.

• Φ is finite-state if the set of Φ-accessible states is

finite. Otherwise, it is infinite-state.

– If the domain of all variables of Φ is finite,

(e.g., booleans, subranges, etc.), then Φ is

finite-state.

– Even if the domain of some variables of Φ is infi-

nite (e.g., integer), Φ may still be finite-state.

Example:

V : {x : integer}
Θ : x = 1
T : {τI , τ1, τ2} with

ρτ1 : x = 1 ∧ x′ = 2
ρτ2 : x = 2 ∧ x′ = 1

J , C : ∅

has 2 accessible states:
〈x : 1〉 and 〈x : 2〉

1-25

