CS256 /Winter 2009 Lecture #1

Zohar Manna

FORMAL METHODS FOR REACTIVE SYSTEMS

Instructor: Zohar Manna
Email: manna@cs.stanford.edu
Office hours: by appointment

TA: Boyu Wang
Email: wangboyu@stanford.edu
Office hours: Tuesday, Friday 3-5pm

Durand 1st floor lounge

Web page:
http://cs256.stanford.edu

Course Meetings: MW11:00-12:15, Gates B12

Course work

e Weekly homework due Wed’s before class.
e Final exam (8:30am-11:30am on Friday, March 20).

e No collaboration on homeworks and exam (but wel-
come otherwise).

e No late homeworks.

1

Concurrent Programs
(Hardware/Software)

Temporal Logic Specifications

Mathematical Logic
(CS156 / CS157)

\

[Verification

(CS256)

/// Automata

Practical /Tools \L

- Pentium Bug
- Ariane Bug
- expected government
regulation for formal
methods in
signalling systems
medical equipment
power plants
highway control

- STeP
- others:

model checking: Theory
Muq; , SMV, VIS,

SPIN, UPPAAL, — Model checking
KRONOS, ... — Deductive verification

deductive: - Specification methods
ACL2, PVS, — Combining model checking
EVES, HOL, ... and deduction

Textbooks
Manna & Pnueli Springer
Vol. I “The Temporal Logic of Reactive and

Concurrent Systems: Specification”
Springer 1992

Vol II: “Temporal Verification of Reactive Systems:
Safety”
Springer 1995

Vol. III: “Temporal Verification of Reactive Systems:
Progress”
Chapters 1-3, on Manna’s web site.

Copies of lecture slides.

Papers.

1-4

Textbook Overview
(Volume IT)

Chapter 0: Preliminary Concepts
[Summary of volume]

Chapter 1: Invariance: Proof Methods

Chapter 2: Invariance: Applications

Chapter 3: Precedence

[Chapter 4: General Safety]

Chapter 5: Algorithmic Verification
(“Model Checking”)

Extra:

e w-automata

e branching time logic CTL; BDDs

1-5

Transformational Systems

Observable only at the beginning and the
end of their execution (“black box”)

input output
Pt system i

with no interaction with the environment.

e specified by

input-output relations

U

state formulas (assertions)
First-Order Logic

e typically

terminating sequential programs
e.g., input x > 0 — output z = /x

1-6

Interaction with the environment

Reactive Systems
e specified by
Observable throughout their execution

(“black cactus”) their on-going behaviors

(histories of interactions with their environment)

U

sequence formulas

S Temporal Logic
system
IR e Typically
: ; — Airline reservation systems
environmen
| — time — Operating systems

— Process control programs

— Communication networks

1-7 1-8

The Components

Overview of the Verification Process

e System Description Language
SPL (Simple Programming Language)

System Description

Language Specification Language Pascal-like high-level language with
TL
SPL constructs for
i
— concurrency
Compntational Model

FTS ..

— nondeterminism

— synchronous/asynchronous communication

Verification Techniques

e Computational Model
FTS (Fair Transition System)

Proof
{or Counterexample)

Compact first-order representation of all sequences
of states that can be generated by a system

1-9 1-10

The Components (cont.)

e Specification Language
TL (temporal logic)

models of a TL formula are infinite
sequences of states

e Verification Techniques

— algorithmic (model checking)

search a state-graph for counterexample

— deductive (theorem proving)

prove first-order verification conditions

1-11

Reactive System Specification
SPL Program P TL formula
!
Fair Transition System (FTS) @ 1
!
Verification
Proof Counterexample
Com(®) C Mod (%)) computation o of @,

i.e., all computations of @ s.t. o & Mod ()
are models of

1-12

States

e vocabulary V — set of typed variables
(type defines the domain over which the values can

range)
— expression over V rT+y
— assertion over V T >y

e state s — interpretation over V

Chapter 0: Example:

VY = {x,y : integer}
Preliminary Concepts
s={z:2,y:3}

(also written as
slz] =2, sly] =3)

r+yisbons
x>y falseon s

e) — set of all states

1-13 1-14

Fair Transition System (FTS) e 7 — finite set of transitions

o=(V,60,7,7,C) For each 7 € T,
Y 2%
(7 is a function from states to sets of states)

(represents a Reactive Program)

A ~ . /
o V={uj,...,un} CV — vocabulary s’ is a T-successor of s if ' € 7(s)

A finite set of system variables — 7 is represented by the
transition relation

(“next-state” relation) pr(V, V') where

System variables = data variables +
control variables

V' — values of variables in the current
e © — initial condition

state
First-order assertion over V that V! — values of variables in the next state
characterizes all initial states Example:

E le:
*ampLe pT::c’Z:c—l—lmeans

©: z=5 A 3<y<5 s'[z] = s[z] + 1

initial states: {z : 5,y : 3} — special idling (stuttering) transition 77,
{x:5,y:4}
V=V
{x :5,y:5} Prr

1-15 1-16

Enabled /Disabled /Taken Transition

Example: e Foreach T € 7,
r 7 is enabled on s if 7(s) %= ()
: : : 4 : :
(@:8,y:3) — {{z:5y:4),(z:5y:5) 7 is disabled on s if 7(s) = ()
“When in state (x : 5,y : 3) 7 may increment

y by either 1 or 2, and keep x unchanged.” oo
e For an infinite sequence of states

(x :5,y:4)and (xz : 5,y : 5) are T-successors O . 80, S1, 82y «+-5 Sky Sk41, ---
of (x : 5,y : 3).

— 7 € 7T is enabled at position k of o

if 7 is enabled on sy,

o J CT: setof just (weakly fair) — 7 € 7 is taken at position k of o
transitions

if 841 1s a T-successor of s,

e C C T : setof compassionate

(strongly fair) transitions

1-17 1-18

Computation

Example:

prixz=5 AN =z+1 Ay =y Infinite sequence of states

7 is enabled on all states s.t. s[z] =5 g 50, 51, 52, - -

and disabled on all other states is a computation of an FTS @ (P-computation),

if it satisfies the following:
Sk Sk+1
Y

J:...<x:5?y23> ,<ac:6jy:3>...

e Initiality: sg is an initial state (satisfies @)
T is enabled at position k
T is taken at position k

e Consecution: Foreach¢ = 0, 1, ... |,

si+1 € 7(s;) for some 7 € 7.

1-19 1-20

e Justice: For each 7 € J, it is the case
that 7 is continually enabled beyond some
position j in o but not taken beyond j.

_ (x:0) —(x:1) —(z:2) — (x:2) —
Example: o (x:3) — (x:3) — (z:3) —
V :{x : integer} (x 1 4) — -
O.:x=0 . i
T - {7-17 Tin(j} with pTinC . x/ — _|_ 1 1S a computation
T {rinc}
C:0 mc Question:meC:(:CZO\/$=1)/\£L’/=ZC+1
Is

T T T

o (2:0) = (2 :0) =5 (@:0) = ... @0 —(@:1) — (z:2) —
7 (£ :2) — (z:2) —> - -

satisfies Initiality and Consecution, but
not Justice. a computation?

Therefore o is not a computation.

(In any computation of this system,
x grows beyond any bound.)

1-21 1-22

e Compassion: For each 7 € C, it is the
case that 7 is enabled at infinitely many BT @ o T
positions in o, but taken at only finitely =,0,7,7,C)

many positions in o.

Run = Initiality 4+ Consecution

Example:

Vi {z,y : integer} Fairness = Justice 4+ Compassion

O:z=0ANy=0

T . {71, Ta, Ty} With Computation= Run + Fairness
pr. - T = x4+ 1 mod 2
pTy::I,’:l/\ylzy—I—l

J A7}
C:{my} Notation: sg —> s1 -3 5o 383 — ...
y
o (6, 0) EN (1,0) EN (0, 0) LN Note: For every two consecutive states s;, s;4-1, there

may be more than one transition that leads from s; to

Si—I—l'
Therefore, several different transitions can be considered

is not a computation: 7y is infinitely
often enabled, but never taken.

(Note: If 7y had only been just,

o would have been a computation, since
Ty 1s not continually enabled.)

as taken at the same time.

1-23 1-24

Finite-State
e For a computation o of @

O . S0, S1, 82y vy Sjy vvv

state s; is a @-accessible state.
e ¢ is finite-state if the set of @-accessible states is
finite. Otherwise, it is infinite-state.
— If the domain of all variables of @ is finite,
(e.g., booleans, subranges, etc.), then @ is
finite-state.
— Even if the domain of some variables of @ is infi-
nite (e.g., integer), @ may still be finite-state.

Example:

V : {zx : integer}

O:xz=1

T : {77, 71,12} with
p71:x=1/\m/=2
pro iz =2ANa2' =1

J,C:0

has 2 accessible states:
(1) and (z : 2)

1-25

