CS256/Winter 2009 Lecture #1

Zohar Manna

FORMAL METHODS FOR REACTIVE SYSTEMS

Instructor: Zohar Manna

Email: manna@cs.stanford.edu

Office hours: by appointment

TA: Boyu Wang

Email: wangboyu@stanford.edu

Office hours: Tuesday, Friday 3-5pm

Durand 1st floor lounge

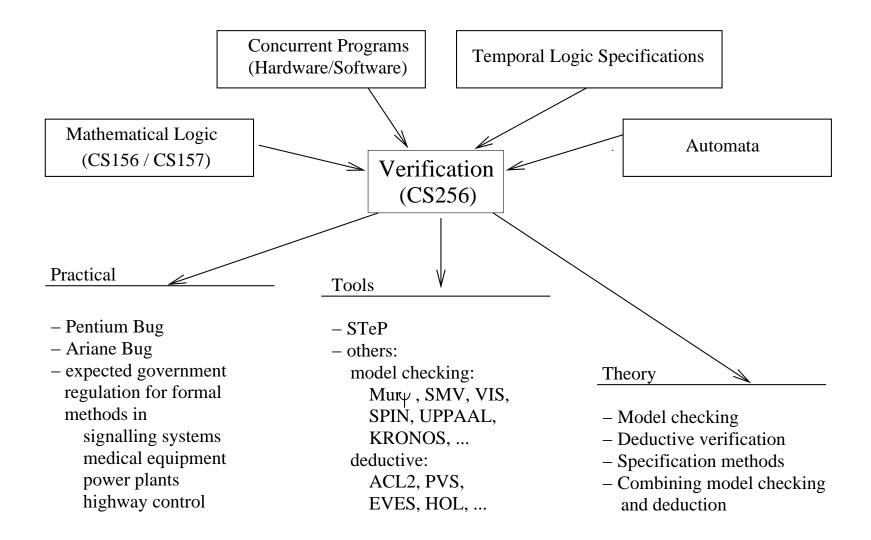
Web page:

http://cs256.stanford.edu

Course Meetings: MW11:00-12:15, Gates B12

Course work

- Weekly homework due Wed's before class.
- Final exam (8:30am-11:30am on Friday, March 20).
- No collaboration on homeworks and exam (but welcome otherwise).
- No late homeworks.



Textbooks

Manna & Pnueli Springer

Vol. I: "The Temporal Logic of Reactive and Concurrent Systems: Specification" Springer 1992

Vol. III: "Temporal Verification of Reactive Systems:

Progress"
Chapters 1–3, on Manna's web site.

Copies of lecture slides.

Papers.

Textbook Overview

(Volume II)

Chapter 0: Preliminary Concepts [Summary of volume I]

Chapter 1: Invariance: Proof Methods

Chapter 2: Invariance: Applications

Chapter 3: Precedence

[Chapter 4: General Safety]

Chapter 5: Algorithmic Verification ("Model Checking")

Extra:

- ω -automata
- branching time logic CTL; BDDs

Transformational Systems

Observable only at the beginning and the end of their execution ("black box")

$$\xrightarrow{\text{input}} \boxed{\text{system}} \xrightarrow{\text{output}}$$

with no interaction with the environment.

• specified by

input-output relations

↓

state formulas (assertions)

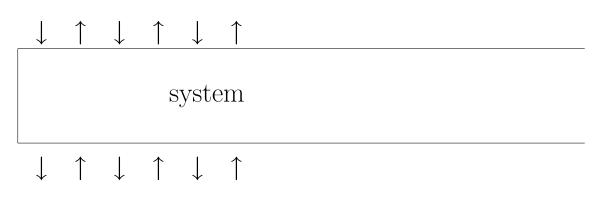
First-Order Logic

• typically

terminating sequential programs e.g., input
$$x \ge 0 \to \text{output } z = \sqrt{x}$$

Reactive Systems

Observable throughout their execution ("black cactus")



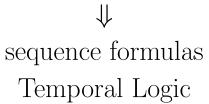
environment

 \longrightarrow time

Interaction with the environment

• specified by

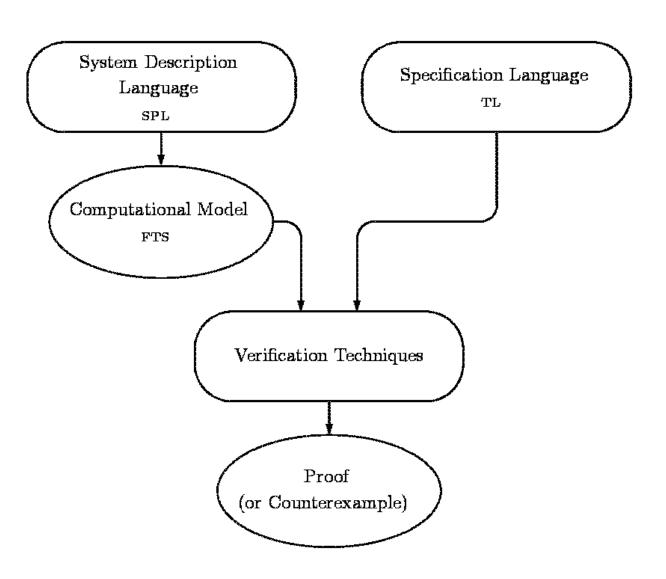
their on-going behaviors (histories of interactions with their environment)



• <u>Typically</u>

- Airline reservation systems
- Operating systems
- Process control programs
- Communication networks

Overview of the Verification Process



The Components

• System Description Language

SPL (Simple Programming Language)

Pascal-like high-level language with constructs for

- concurrency
- nondeterminism
- synchronous/asynchronous communication

• Computational Model

FTS (Fair Transition System)

Compact first-order representation of all sequences of states that can be generated by a system

The Components (cont.)

• Specification Language

TL (temporal logic)

models of a TL formula are infinite sequences of states

• Verification Techniques

- algorithmic (model checking)
 search a state-graph for counterexample
- <u>deductive</u> (<u>theorem proving</u>)
 prove first-order verification conditions

Reactive System

Specification

Verification

Proof

 $\operatorname{Com}(\Phi) \subseteq \operatorname{Mod}(\psi)$ i.e., all computations of Φ are models of ψ

Counterexample

computation σ of Φ , s.t. $\sigma \not\in \operatorname{Mod}(\psi)$

Chapter 0:

Preliminary Concepts

States

- \bullet vocabulary \mathcal{V} set of typed variables (type defines the domain over which the values can range)
 - $\underline{\text{expression}} \text{ over } \mathcal{V} \qquad x + y$
 - assertion over \mathcal{V} x > y
- state s interpretation over ${\cal V}$

Example:

$$\mathcal{V} = \{x, y : \text{integer}\}$$
 $s = \{x : 2, y : 3\}$
(also written as
 $s[x] = 2, \quad s[y] = 3$)
 $x + y \text{ is 5 on } s$
 $x > y \quad \text{false on } s$

• Σ — set of all states

Fair Transition System (FTS)

$$\Phi = \langle V, \Theta, \mathcal{T}, \mathcal{J}, \mathcal{C} \rangle$$

(represents a Reactive Program)

• $V = \{u_1, \ldots, u_n\} \subseteq \mathcal{V}$ — vocabulary

A finite set of system variables

System variables = data variables +

control variables

• Θ — initial condition

First-order assertion over V that characterizes all initial states

Example:

$$\Theta: \quad x = 5 \land 3 \le y \le 5$$

initial states: $\{x:5,y:3\}$

 ${x:5,y:4}$

 ${x:5,y:5}$

• \mathcal{T} — finite set of transitions

For each $\tau \in \mathcal{T}$, $\tau: \Sigma \to 2^{\Sigma}$

 $(\tau \text{ is a function from states to sets of states})$

- -s' is a <u> τ -successor</u> of s if $s' \in \tau(s)$
- $-\tau$ is represented by the transition relation ("next-state" relation) $\rho_{\tau}(V, V')$ where
 - V values of variables in the current state
 - V' values of variables in the next state

Example:

 $\rho_{\tau}: x' = x + 1 \text{ means}$ s'[x] = s[x] + 1

$$s'[x] = s[x] + 1$$

- special idling (stuttering) transition τ_I ,

$$\rho_{\tau_I}:V=V'$$

Example:

$$\langle x:5,y:3\rangle \xrightarrow{\tau} \{\langle x:5,y:4\rangle, \langle x:5,y:5\rangle\}$$

"When in state $\langle x:5,y:3\rangle$ τ may increment y by either 1 or 2, and keep x unchanged."

 $\langle x:5,y:4\rangle$ and $\langle x:5,y:5\rangle$ are τ -successors of $\langle x:5,y:3\rangle$.

- $\mathcal{J} \subseteq \mathcal{T}$: set of just (weakly fair) transitions
- $C \subseteq T$: set of <u>compassionate</u> (strongly fair) transitions

Enabled/Disabled/Taken Transition

- For each $\tau \in \mathcal{T}$, $\tau \text{ is } \underline{\text{enabled on } s \text{ if } \tau(s) \neq \emptyset}$ $\tau \text{ is } \underline{\text{disabled on } s \text{ if } \tau(s) = \emptyset}$
- For an infinite sequence of states $\sigma: s_0, s_1, s_2, \ldots, s_k, s_{k+1}, \ldots$
 - $-\tau \in \mathcal{T}$ is enabled at position k of σ if τ is enabled on s_k
 - $-\tau \in \mathcal{T}$ is taken at position k of σ if s_{k+1} is a τ -successor of s_k

Example:

$$\rho_{\tau}: x = 5 \land x' = x + 1 \land y' = y$$

 τ is enabled on all states s.t. s[x] = 5 and disabled on all other states

$$\sigma: \ldots \overbrace{\langle x:5,y:3\rangle}^{s_k}, \overbrace{\langle x:6,y:3\rangle}^{s_{k+1}} \ldots$$

au is enabled at position k

au is taken at position k

Computation

Infinite sequence of states

$$\sigma$$
: s_0 , s_1 , s_2 , ...

is a computation of an FTS Φ (Φ -computation), if it satisfies the following:

- Initiality: s_0 is an initial state (satisfies Θ)
- Consecution: For each $i = 0, 1, \ldots,$ $s_{i+1} \in \tau(s_i)$ for some $\tau \in \mathcal{T}$.

• <u>Justice</u>: For each $\tau \in \mathcal{J}$, it is <u>not</u> the case that τ is continually enabled beyond some position j in σ but not taken beyond j.

Example:

 $V: \{x: integer\}$

 $\Theta: x = 0$

 $\mathcal{T}: \{\tau_I, \tau_{\text{inc}}\} \text{ with } \rho_{\tau_{\text{inc}}}: x' = x + 1$

 \mathcal{J} : $\{ au_{ ext{inc}}\}$

 $C:\emptyset$

$$\sigma: \langle x:0\rangle \xrightarrow{\tau_I} \langle x:0\rangle \xrightarrow{\tau_I} \langle x:0\rangle \xrightarrow{\tau_I} \dots$$

satisfies Initiality and Consecution, but not Justice.

Therefore σ is not a computation.

(In any computation of this system, x grows beyond any bound.)

$$\sigma: \left[\begin{array}{c} \langle x:0\rangle \longrightarrow \langle x:1\rangle \longrightarrow \langle x:2\rangle \longrightarrow \langle x:2\rangle \longrightarrow \\ \langle x:3\rangle \longrightarrow \langle x:3\rangle \longrightarrow \langle x:3\rangle \longrightarrow \\ \langle x:4\rangle \longrightarrow \cdots \end{array}\right]$$

is a computation

Question: $\rho_{\tau_{\text{inc}}}$: $(x = 0 \lor x = 1) \land x' = x + 1$

$$\sigma: \left[\begin{array}{c} \langle x:0\rangle \longrightarrow \langle x:1\rangle \longrightarrow \langle x:2\rangle \longrightarrow \\ \langle x:2\rangle \longrightarrow \langle x:2\rangle \longrightarrow \cdots \end{array} \right]$$

a computation?

• Compassion: For each $\tau \in \mathcal{C}$, it is not the case that τ is enabled at infinitely many positions in σ , but taken at only finitely many positions in σ .

Example:

$$V : \{x, y : \text{integer}\}$$

$$\Theta : x = 0 \land y = 0$$

$$T : \{\tau_I, \tau_x, \tau_y\} \text{ with}$$

$$\rho_{\tau_x} : x' = x + 1 \mod 2$$

$$\rho_{\tau_y} : x = 1 \land y' = y + 1$$

$$\mathcal{J} : \{\tau_x\}$$

$$\mathcal{C} : \{\tau_y\}$$

$$\sigma: \langle \stackrel{x}{0}, \stackrel{y}{0} \rangle \xrightarrow{\tau_x} \langle 1, 0 \rangle \xrightarrow{\tau_x} \langle 0, 0 \rangle \xrightarrow{\tau_x} \dots$$

is not a computation: τ_y is infinitely often enabled, but never taken. (Note: If τ_y had only been just, σ would have been a computation, since τ_y is not continually enabled.)

FTS
$$\Phi = \langle V, \Theta, T, \mathcal{J}, \mathcal{C} \rangle$$

Run = Initiality + Consecution

Fairness = Justice + Compassion

Computation = Run + Fairness

Notation:
$$s_0 \xrightarrow{\tau_1} s_1 \xrightarrow{\tau_2} s_2 \xrightarrow{\tau_3} s_3 \rightarrow \dots$$

Note: For every two consecutive states s_i, s_{i+1} , there may be more than one transition that leads from s_i to s_{i+1} .

Therefore, several different transitions can be considered as taken at the same time.

Finite-State

• For a computation σ of Φ

$$\sigma$$
: $s_0, s_1, s_2, \ldots, s_i, \ldots$

state s_i is a Φ -accessible state.

- Φ is <u>finite-state</u> if the set of Φ -accessible states is finite. Otherwise, it is infinite-state.
 - If the domain of all variables of Φ is finite, (e.g., booleans, subranges, etc.), then Φ is finite-state.
 - Even if the domain of some variables of Φ is infinite (e.g., integer), Φ may still be finite-state.

Example:

 $V: \{x: integer\}$

 $\Theta: x = 1$

 $\mathcal{T}: \{\tau_I, \tau_1, \tau_2\}$ with

 $\rho_{\tau_1} : x = 1 \land x' = 2$

 ρ_{τ_2} : $x = 2 \land x' = 1$

 $\mathcal{J}, \mathcal{C}: \emptyset$

has 2 accessible states:

 $\langle x:1\rangle$ and $\langle x:2\rangle$